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(57) ABSTRACT

Entities may be matched to enhance the efficiency of various
commercial activities using various system and method
embodiments of the disclosed subject matter. Belief propa-
gation on a graph data structure defining a bipartite or uni-
partite matching opportunity is used to calculate a best match-
ing. In embodiments, functions are implemented based upon
the match, such as executing sales between matched buyers
and sellers in an online auction system. In embodiments,
messages with scalar values carry information about the rela-
tive value of possible matchings, initially provided as weights
or values for the possible matchings. Weights may depend on,
for example, bids or costs. Messages may be passed, for
example over a network between processors respective to the
nodes. Belief values reflecting a best matching can be con-
tinuously updated for each node responsively to the value
information and received messages to rank the matches
respective to each node, which progressively improve. This
allows short or complete terminations conditions to deter-
mine the goodness of the matching. Differing numbers of
matches respective to each member of the disjoint sets and
distributions of the desirability of different numbers of
matches can be integrated in the matchings in respective
embodiments.
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1
BELIEF PROPAGATION FOR GENERALIZED
MATCHING

This application claims the benefit of U.S. Provisional
Application No. 61/023,767, entitled “Belief Propagation for
Generalized Matching” filed on Jan. 25, 2008, U.S. Provi-
sional Application No. 61/029,206, entitled “Belief Propaga-
tion for Generalized Matching” filed on Jan. 25, 2008, and
U.S. Provisional Application No. 61/122,356, entitled “Clus-
tering Using B-Matching and Semidefinite Embedding Algo-
rithms ” filed on Dec. 12, 2008, each of which is incorporated
herein by reference in its entirety.

This invention was made with government support under
Grant No. 11S-0347499 awarded by National Science Foun-
dation. The government has certain rights in the invention.

Embodiments of the present invention relate generally to
matching, and, more particularly, to methods, systems, one or
more computers program products and one or more computer
readable media for matching things such as goods, services,
and people to other entities, such as buyers, businesses, and
people. Often these kinds of matchings present the opportu-
nity to optimize some global good, such as revenue for a
seller. Such an optimized matching can be handled using
various methods.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic diagram of a matching problem
represented as a bipartite graph showing matched and
unmatched elements according to some embodiments of the
disclosed subject matter.

FIG. 1B illustrates networked processors according to
some embodiments of the disclosed subject matter.

FIGS. 2A, 2B, and 2D are flow charts illustrating method
processes for matching a set of things to a second set of things
(or members of the same set of things in a unipartite applica-
tion) based upon belief propagation according to some
embodiments of the disclosed subject matter.

FIGS. 2C and 2E illustrate data storage and processing
elements of a distributed processing embodiment, according
to some embodiments of the disclosed subject matter.

FIG. 3 is a diagram of a system for matching a first class of
things to a second class of things using belief propagation
according to some embodiments of the disclosed subject mat-
ter.

FIG. 4 is a diagram of a system for matching a first class of
things to a second class of things using belief propagation
including parallel processors according to some embodi-
ments of the disclosed subject matter.

FIG. 5 is a diagram of an arrangement for distributed pro-
cessing for performing generalized matching using belief
propagation according to some embodiments of the disclosed
subject matter.

FIG. 6 is a diagram of a node processor according to some
embodiments of the disclosed subject matter.

FIG. 7 is a diagram of a system for matching advertisers
with search terms using belief propagation according to some
embodiments of the disclosed subject matter.

FIG. 8 is a chart of a method of matching advertisers with
search terms using belief propagation according to some
embodiments of the disclosed subject matter.

FIG. 9 is a diagram of a system for matching dating service
members using belief propagation according to some
embodiments of the disclosed subject matter.

FIG. 10 is a chart of a method of matching dating service
members using belief propagation according to some
embodiments of the disclosed subject matter.
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FIG. 11 is a diagram of a system for matching sellers and
buyers or goods/services to bids in an auction using belief
propagation according to some embodiments of the disclosed
subject matter.

FIG. 12 is a chart of a method of matching sellers and
buyers or goods/services to bids in an auction using belief
propagation according to some embodiments of the disclosed
subject matter.

FIG. 13 is a diagram of a system for resource allocation
using belief propagation according to some embodiments of
the disclosed subject matter.

FIG. 14 is a chart of a method of resource allocation using
belief propagation according to some embodiments of the
disclosed subject matter.

FIG. 15 is a diagram of a plurality of belief propagation
processors according to some embodiments of the disclosed
subject matter.

FIG. 16 is a diagram of a belief propagation processor
according to some embodiments of the disclosed subject mat-
ter.

FIGS. 17A and 17B illustrate data and computational
aspects of the handling of degree distribution matching
opportunities which may be used to modify the structures and
methods of the other embodiments, according to some
embodiments of the disclosed subject matter.

DETAILED DESCRIPTION

FIG. 1A is a schematic diagram of a matching problem
represented as a bipartite graph showing matched and
unmatched elements according to some embodiments of the
disclosed subject matter. The bipartite graph 100 shows a first
group of nodes 102 (ul-u4) matched to a second group of
nodes 104 (v1-v4). The first group may represent a first group
of entities or things such as goods, people, or resources and
the second group may represent a second group of entities or
things such as consumers, people, or resource users. Kinds of
things that can make up these first and second groups are
numerous as should be clear from the instant disclosure, but a
common theme in most embodiments is that entities of the
first group are to be matched to entities of the second group as
a part of some kind of a transaction and the precise matching
may correspond to some kind of aggregate value such as
maximum total revenue. The matching problem posed by the
context of the particular first and second groups and the
aggregate value sought may also involve constraints such as
the number of first group of things that are to be matched to a
given second group of thing. Groups could be distinguished
by any classification, and groupings are not limited by the
examples given.

In FIG. 1A, dashed lines (e.g., 106) represent possible
edges and solid lines (e.g., 108) represent b-matched edges.
By b-matched, it is meant that the problem illustrated results
in a desired b matches between each of the first group of
things to one or more second group of things. In the case
shown on the bipartite graph 100, b=2 for each node of groups
102 and 104, so that each node 102 or 104 is connected to two
other nodes 104 or 102 with matched edges 108.

Typically, the information representing the potential
assignment as indicated by all of the lines 106 and 108 can be
supplemented with additional information, generally,
weights, which indicate something about the value or cost
associated with making each assignment. Here a weight W
value of an edge is represented at 116. This weight informa-
tion may serve as a basis for selecting an assignment that
provides some optimum or provides a basis for discriminating
the goodness of one assignment scheme versus another. The
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additional information may be represented in the form of any
suitable data structure to store a weight for each edge, such as
a weight matrix 118 with each row corresponding to a mem-
ber of the first group and each column corresponding to a
member of the second group with each cell 120 at an inter-
sections indicating the respective weight of an edge connect-
ing each pair of members. The weight matrix 118 represents
different weights for each combination of buyer and seller.

The problem of matching members of one group to another
can be described in terms of a bipartite graph. Given a bipar-
tite graph (which can be represented by 100) and associated
weight data, a method can be used to perform a matching
based on belief propagation. Here the example of a situation
where it is desired to match suppliers with customers will be
used to illustrate the method. One or more computers may be
provided with information defining supplier and customers,
which are referred to herein as “nodes,” which information
may be considered to define a bipartite graph 100. Each
supplier node (u 102 or v 104) is connected to a customer
node (v 104 or u 102) by an edge 108 so the one or more
computers is supplied with the potential edges 108 of all the
nodes 102, 104 mapping from a supplier node to a customer
node. The one or more computers is also provided with access
to weight data, for example a matrix 118 with a weight value
119 for each edge of the bipartite graph data structure. The
process executed by the one or more computers is such that
information is recorded and updated respective of each node,
such that a subprocess is performed for each node that com-
municates with other nodes. In this example, the weight data
may be total cost of goods and the optimum matching would
coincide with maximum exchange ofrevenue between buyers
and sellers.

Referring now also to FIG. 1B, according to this and other
embodiments, the matching problem may be distributed
among multiple processors 142 and 144 communicating over
a network such that each can send and receive messages, the
links being depicted figuratively as connecting lines 140. For
the present example, each node 102 or 104 may correspond to
a respective node processor 142 or 144. An alternative would
be that each processor would correspond to multiple nodes,
but for the sake of discussion, the case where there is a
separate processor for each node will be assumed. In such a
case only a portion of the weight data in the weight matrix 118
may be provided to each supplier node processor 142, the
portion being sufficient to indicate the weights of the edges
that connect each supplier to all its potential customers (e.g.,
all the other customers). Similarly, only a portion of the
weight matrix may be provided to each customer node pro-
cessor 144 indicating the weights of the edges that connect the
customer to all its potential suppliers. The node processors
can access the respective weight information on common
(e.g., central) or distributed data stores (e.g., respective of
each node 142, 144 or community of node processors 142,
144).

Thus, each supplier or customer node may only require
access to a vector, defining the potentially connected cus-
tomer and supplier node weights. In an architecture embodi-
ment for solving the bipartite graph problem, the graph and
matrix data may be apportioned among different computers
or processors such that each receives only the lists of its
suppliers or customers and the associated weights. Other than
that, the only other information required for a complete solu-
tion, as will become clear below, is a train of messages from
other nodes, where each message may be a simple scalar.

A matching can be obtained that progressively seeks an
optimization of the above problem by having each customer
node keep a score of, for example, how much better buying
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from each supplier node is than buying from other suppliers.
Also, each buyer node may keep a score of how much better
selling to each customer node is than selling to other custom-
ers. Initially, the score may be just the dollar values repre-
sented by the weights. In the process described below, figu-
ratively speaking, as the scores are updated, the supplier
nodes tell the customer nodes how much potential money is
lostifthey are chosen according to their current scores and the
customers tell the suppliers similarly. All the scores are con-
tinuously updated using this data which may be described as
passing messages among the nodes, where the messages con-
tain the information to keep score. Eventually, if the scores
are updated according to subject matter described below, the
scores progress toward an optimum sorted list of suppliers for
each customer and a sorted list of customers for each supplier.
Then each supplier or customer node’s information can be
used to select that supplier or customer’s best one or more
matches.

In the approach described, each node updates a value cor-
responding to each of the supplier nodes and customer nodes,
with a processor. The process may be described as “belief
propagation,” and entails passing messages between adjacent
nodes. An important aspect of the approach is knowing when
to stop passing messages and determine the best matchings
from the node’s data. Because the approach can progress
toward an optimal solution (that is, when the operation 210, or
similar in the other embodiments, is performed, the best
matches found get better and better with the number of mes-
sages processed). Thus, the one or more computers could be
programmed to stop after a period of time or after a threshold
number of messages. An optimal solution can be obtained
upon the realization of another termination condition which is
described below.

Once the termination condition is met, the one or more
computers, a predetermined number of supplier nodes and a
predetermined number of respective customer nodes match-
ing each selected supplier node, may be selected and provided
to a client process, for example the matchings may be dis-
played on a terminal for a user to see.

Note that the graph 100 includes a limited number of nodes
and edges for illustration purposes. The number of nodes and
edges in an actual graph data structure for the embodiments
described below may include a greater or lesser number of
nodes/edges than the number of nodes/edges shown in FIG.
1A. Also, the b value for each node in a particular implemen-
tation may be assigned a value other than 2 depending on the
contemplated matching problem to be solved by the imple-
mentation.

Referring now to FIG. 2A through 2E, after providing the
graph data structure and the edge weight data (e.g., weight
matrix or vectors to all the node processors) as indicated by
the operation 204 of flow chart 200, variables are initialized as
indicated by the operation 206. The latter operation may
include initializing values of data storage elements that store
the values of the most recent messages received by the node
processor. An iterative process is performed at 208 by each
node processor 230, 250 (see node processors in FIGS. 2C
and 2E) to generate messages and to process received mes-
sages until a termination condition 212 is met. Referring to
FIGS. 2B and 2C, the multiple customer node processors 230
contain various updateable data stores 241, 243, 245 which
hold a weight vector 241, a received message vector 243, and
anew message vector 245. Each node processor 230 also may
store data indicating the potential supplier nodes to which the
node corresponding to the node processor 232 to may be
potentially matched. This additional data may be inherent in
the data stored at 241, 243, and 245 depending on the data



US 9,117,235 B2

5

structure employed since the weight matrices, received mes-
sage values, and new message values are each respective of
one of these attached node processors 232. Also, multiple
supplier node processors 250 contain various updateable data
stores 261, 263, 265 which hold a weight vector 261, a
received message vector 263, and a new message vector 265.
Each node processor 250 also may store data indicating the
potential nodes to which the node corresponding to the node
processor 252 to which it may be potentially optimally
matched, but this data may be inherent in the other data as
discussed above.

The node processor 230 receives messages from, and trans-
mits messages to, node processors 232 to which it is con-
nected, each of which corresponds to another node in the
respective disjoint set. In this example, each node processor
230 and 232 corresponds to a node of a bipartite graph which
has two disjoint sets U and V. The node processors 232 each
have the features of node processor 230. The function of each
node processor 230 may be to derive messages from the data
in the data stores 241, 243, 245 and transmit such messages
and to receive messages and update the data in the data stores
241, 243, 245. This is done iteratively, in the subprocess 208,
as shown in process 200 of in FIG. 2A.

FIG. 2B illustrates an embodiment of operations within
208 of FIG. 2A and FIG. 2C illustrates further operations
within 208 of FIG. 2A. Similar operations are illustrated in
FIG. 2D. FIG. 2B shows operations a node in the first set U of
the bipartite graph and FIG. 2D shows operations a node in
the second set V of the bipartite graph. The operations are the
same, but the operand indices are different in order to account
for the set to which the node belongs.

However illustrated in FIG. 2A, the operations of FIG. 2B
may be done by separate processors respective of one or more
nodes in the single bipartite graph, by processors correspond-
ing to subsets of nodes or by a single processor. Thus, the
iteration illustrated as a single process at 208 may be per-
formed by separate processors in an independent fashion
based on messages shared between them.

Referring in particular to FIG. 2B, at 242, the node proces-
sor 230 performs calculations corresponding to node U,. At
242, intermediate values SM; are calculated for each node V,;
to which node U, may be matched using messages received
from the V; node processors. These intermediate values are
simply SM=RM_ *exp(W, ;) for k=1 to N with k=j. (“exp”
denotes exponentiation based on the natural logarithm and *
represents multiplication) That is, the contribution of the term
for the message RM,, where k=j is skipped over. At 244, the
list of intermediate values SM, is sorted and the term corre-
sponding to the supplier having the bth highest value is iden-
tified. The suppliers are indicated by the index j, so a value L
is set to this index. At 248, new messages NM, are calculated
to be sent to each supplier node processor 232 according to:
NM=exp(W, )/[exp(W, ,)*RM,]. This process at 248 is
referred to herein as a message update process to refer to the
fact that the sequence of messages continuously updates the
belief values calculated by other processors (not to imply that
each processor in all implementations would continuously
calculate and update its belief values, since this operation, for
example as described at 210, can be done once or repeatedly).

Referring in particular to FIG. 2D, at 262, the node proces-
sor 250 performs calculations corresponding to node V,. At
262, intermediate values SM; are calculated for each node U,
to which node V, may be matched using messages received
from the U, node processors. These intermediate values are
simply SM=RMk*exp(W, ) for k=1 to N with k=j. (“exp”
denotes exponentiation based on the natural logarithm and *
represents multiplication) That is, the contribution of the term
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for the message RM,. where k=j is skipped over. At 264, the
list of intermediate values SM,; is sorted and the term corre-
sponding to the customer having the bth highest value is
identified. The customers are indicated by the index j, so a
value L is set to this index. At 266, new messages NM, are
calculated to be sent to each customer node processor 252
according to: NM=exp(W, )/[exp(W, ;)*RM, ].

Referring back to FIG. 2A, the new messages are passed
between all the node processors 232 and 252 until a termina-
tion condition 212 is reached. Operation proceeds based on
whether the termination condition has been reached, as indi-
cated at 212. The termination condition may be, for example,
expiration of a watchdog timer or a number of messages
received by each of the processors. Another alternative, and
one that provides an optimum solution, is for each node
processor to terminate when the messages stop changing.
That is, the more recent message is compared to the previous
message and if they are the same, the processor stops pro-
cessing for sending node, or when all messages are the same
as corresponding prior messages processing for all nodes can
be halted. The operation 212 may also include updating the
data stores 243 or 263.

As mentioned, the termination condition can be defined as
reaching a steady state with respect to message updating, that
is, the changes in messages stops. Alternatively, the steady
state can be defined as no further message updates being sent
if the sending processor makes the determination that the
updates are not changing, or when a number of update mes-
sage being sent or received is below a certain threshold.
Alternatively, the termination condition can be defined in
terms of a number of iterations of message updating or a
number of messages sent (either an aggregate number or a
number per node). In another alternative, the termination
condition can be defined as the elapsing of a predetermined
period of time. Ifthe termination condition has been reached,
processing continues with the selection, for an input node, of
apredetermined number of supplier nodes or a predetermined
number of customer nodes, as indicated at 214. Otherwise
processing returns to the operation indicated at 208 and dis-
cussed above.

At 210, each node can calculate a vector showing the
optimal matches. This can be done by U nodes by enumerat-
ing the values of exp(W, ,)*RM, over k and selecting the b
largest values. This can be done by V nodes by enumerating
the values of exp(W, ,)*RM, over k and selecting the b largest
values. Note that the RM values are respective of the U of V
node for which the calculation is done.

The Appendix I gives an explanation of the operations 208
and 210 and some further detail and analysis.

Note that the graph data structure can be any type of data
structure suitable for use with generalized matching using
belief propagation, such as a bipartite graph data structure.
The graph data structure can contain one or more nodes of the
same group (unipartite case) or different groups (bipartite
case). For example, the graph data structure can include sup-
plier nodes and customer nodes, where each supplier node
can be connected to one or more customer nodes, and vice
versa. In respective embodiments, the graph node data struc-
ture elements correspond to physical entities such as suppli-
ers, customers, goods and/or services. In addition, in embodi-
ments, the nodes correspond to other entities as described
below with respect to other embodiments.

The weight data, such as represented by the weight matrix
discussed above may represent a profit value for each edge
between two nodes of the graph data structure. The weight
matrix may also be a cost matrix representing a cost associ-
ated with a respective matching with suitable values for the
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terms to suit the computational methods. Inthe case of a profit
matrix, the matching process typically includes a function to
enhance and/or maximize profit. And in the case of a cost
matrix, the matching process typically includes a function to
reduce and/or minimize cost. The values in the profit matrix
can be negative, zero, positive or a combination of these
values.

An exemplary weight matrix may be represented by a data
structure having a record corresponding to each node. The
record for each node can include a list of adjacent nodes and
a profit value for each of the adjacent nodes. The term “adja-
cent” refers to the nodes to which a given node may be
connected in the same (unipartite case) or a disjoint set (bipar-
tite case). The items of data in the profit matrix can represent
physical entities or values such as actual supplier capacity,
actual customer demand, monetary amounts of bidding or
asking prices, monetary amounts of profit, distances, mon-
etary costs, and/or the like. A portion of the profit matrix can
be selected and provided to a respective node processor. The
selected portion can represent only the profit matrix record
corresponding to each respective node processor. By provid-
ing only a portion of the profit matrix to each node processor,
data storage and transfer requirements can be reduced.

In operation 208, electronic messages are passed between
adjacent nodes, which may be networked or communicate by
a bus or any other data communication system. The node
processor can be a computer, a single processor on a device
with multiple processors, or any suitable machine capable of
making the described computations and sending and receiv-
ing the described data. As described above, value (or data
content) of each message is determined according to a com-
pressed message update process. Received messages may be
stored by the processor in an electronic memory, such as, for
example, random access memory (RAM), non-volatile stor-
age, a database or any suitable data store. The operation 210
can be performed the respective node processors. Down-
stream processing 214 may include a process that corre-
sponds to the particular application. For example, if the bipar-
tite graph may describe an application in which search
queries or other key words terms appearing on web pages are
assigned to bidders, as described in U.S. patent application
Ser. No. 11/285,126 (published as U.S. Publication No. 2007/
0118432) to Vazirani et. al., filed Nov. 21, 2005, which is
hereby incorporated by reference in its entirety. In that case,
a first set of nodes would be the bidders and a second set of
nodes would be the sellers and the downstream operation
would include placing the advertisements corresponding to
the bidders to corresponding locations on one or more web
pages, for example, alongside search results or on other web
pages.

The general opportunity of matching bidders to advertising
opportunities on the web can include placing advertisements
in a location (such as a web page, a real time data stream such
as amovie, a broadcast, a netcast, a feature such as a billboard
or product placement in a data stream or other medium such
as an online game world, or any other type of media outlet or
scheme) and time (the instant advertising opportunity, for
example defined by time and location, referable to as “adver-
tising spots™). The bidders for advertising spots can be indi-
viduals, corporations, or virtual entities such as entities in
games, such as avatars.

In the above and further embodiments in which multiple
processors are used to perform belief propagation, respective
processors can be linked by any suitable mechanism which
may include local or distributed input/output systems includ-
ing electronic or optical input/output systems and systems
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providing communication over networks, busses, crossbar
switches, or any other suitable data interchange system.

An important example of advertising spots is auction sys-
tems for placing advertisements in response to events such as
the submission of certain keywords or phrases in search
engines or the contents of web pages accessed in a search. The
advertisements can be placed alongside search results and on
target web pages responsively to the content of the target or
the terms used in a search query. In auction systems, users can
enter bids for terms. In addition, the users can provide budgets
or quotas to limit the number of advertisements that are
placed, thereby allowing the user to maintain an advertising
budget.

The auction provider, for example, an Internet search
engine provider, can receive all or a part of the bid for the
advertising spot. Also, additional factors, such as click-
through rates, may also be taken into account in determining
the bidding schedule.

Thenodes selected at 214 (and corresponding operations in
other embodiments) may be matched based on updated belief
values. For example, in a b-matching problem, the b nodes
having the highest belief values with respect to an input node
are selected. Ties can be handled in a number of ways includ-
ing by using a “coin toss” to select between tying nodes, or,
alternatively or in addition, a small random value can be
added to the weight or profit matrix value for each edge so that
no two nodes are likely to tie. The selected nodes can be
provided as output to another process or system. Processing
can terminate at 216.

The 202-216 procedure may be repeated in whole or in part
in order to accomplish a variety of transactions involving
matching based on associated values of respective matches
and data limiting or variably valuing the number of matches.
In the simplest case, the data limiting the number of matches
is a single constant value (b) for all the entities to be matched.
In more general cases, where methods and systems for
addressing them are discussed below, the number of desired
matches can be respective of each node, that is, there may be
quotas for up to 2n different matches, each respective of a
different party. For example, each seller may identify a par-
ticular quota and each buyer may identify a particular quota.
Also, the matches may be made according to the relative cost
or profit or some other measure indicating the desirability
associated with of a respective number of matches. This sce-
nario is also discussed below.

Belief values may be updated for the entire graph data
structure and then matching results may be provided for a
plurality of nodes of interest before the belief values of the
graph are updated. Alternatively, because the matching may
result in changes to one or more nodes in the graph as a result
of’being selected as matching nodes (e.g., a supplier’s amount
of available goods may be reduced or a customer’s require-
ment for goods may have been met), the belief values may
need to be recomputed each time a matching is performed for
a node.

FIG. 3 is a block diagram of a system for generalized
matching using belief propagation according to some
embodiments of the disclosed subject matter. In particular, a
belief propagation matching system 300 includes a group of
suppliers 302 and a group of customers 304. Each of the
suppliers 302 and customers 304 are represented as nodes in
a graph data structure 306. The system 300 also includes a
profit (or cost) matrix 308. The graph data structure 306 and
profit matrix 308 are provided as input to a belief propagation
matching processor 312. Also provided as input to the belief
propagation matching processor 312 is input data 310. The
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belief propagation matching processor is coupled to a data
storage 314 and provides matching results 316 as output.

In operation, the suppliers 302 and customers 304 are
stored as nodes or vertices of the graph data structure 306. The
profit matrix 308 stores the edge profits (or weights) for each 3
edge connecting a supplier and customer. The graph data
structure 306 and the profit matrix 308 can each be stored in
the data storage 314.

The belief propagation matching processor 312 receives
the input 310, which can be, for example, a node of interest for 10
b-matching. The belief propagation matching processor 312

10

The belief propagation matching processor 312 can oper-
ate according to software instructions retrieved from a one or
more computers readable media. The software instructions,
when executed by the belief propagation matching processor
312, cause the belief propagation matching processor 312 to
perform the belief propagation generalized matching meth-
ods as described above.

For example, when adapted for an advertisement/keyword
matching application, an implementation of software for the
belief propagation matching processor 312 can function
according to the following pseudo code:

Begin Pseudo Code

// define data structures and variables

data structure GraphNode { float received__msgs[ max__num__of _neighbors ] };
GraphNode ads [num__of _ads];

GraphNode keywords [num__of_keywords];

int Profit. Matrix [num_ of ads] [num__of keywords];

int b=3;

Boolean Message_ Changed = true;
initialize all received__msgs to 1; // to compute messages first time around
initialize Profit_ Matrix with bid values;
// start a main loop to continue until no messages are changed
while ( Message_ Changed == true ) {
Message_ Changed = false; // switch off loop unless a message changes
// send messages from ads to keywords
for i=1 to num__of_ads {

for j=1 to num__of_keywords {
sorted__msgsp [ ] =

sorted list of ads[i].received__msgs[ ] *
corresponding exp(Profit_ Matrix[ ][ ]) values
excluding that from keyword node j;
L = original index of sorted__msgs[b]; // get index (or
node) of the bth received msg*profit;
old__revd__msg = keywords[j].received__msgs[i];
keywords[j].received__msgs[i] =
exp(Profit_ Matrix[i][j]) / (exp(Profit_ Matrix[i][L]) *
ads[i].received__msgs[L]);
if old__revd__msg not equal to keywords[j].received__msgs][i]
then Message_ Changed = true;

} end j loop

} end i loop
// send messages from keywords to ads
for j=1 to num__of_keywords {

for i=1 to num__of_ads {

sorted__msgs[ | = sorted list of keywords[j].received__msgs[ ] *
corresponding exp(Profit_ Matrix[ ][ ]) values
excluding that from ad node i;

L = original index of sorted__msgs[b]; // get index (or
node) of the bth received msg*profit;

old__revd__msg = ads[i].received__msgs[j];

ads[i].received__msgs[j] =
exp(Profit_ Matrix[i][j]) / (exp(Profit_ Matrix[L][j]) *
keywords[j].received__msgs[L]);

if old__revd__msg not equal to ads[i].received__msgs([j]
then Message_ Changed = true;

} end i loop

} end j loop
} end while loop - we are now done - no messages are changing
// now get the belief values for a keyword node of interest
for i=1 to num__of_ads {
belief values[i] = keywords[keyword__of _interest].received__msgs[i] *
Profit_ Matrix[i][keyword__of interest];

}end iloop

sort belief values[ ];
output largest b belief values[ ];

End Pseudo Code

uses the graph data structure 306 and the profit matrix 308 to 60
perform the b-matching according to the method described
above with respect to FIG. 2A. The messages and beliefs are
stored in the data storage 314. Once the termination condition

is met, the belief propagation matching processor 312 outputs
the matching results 316. The termination condition can 65
include any of the termination conditions described above
with reference to the conditional branch 212 in FIG. 2A.

The above pseudo code represents an example of a linear
implementation of the belief propagation method described
above. Simplifications have been made for purposes of illus-
tration including assuming that each node exchanges mes-
sages with all nodes of the corresponding type. Simplifica-
tions have been made in the flow charts of FIG. 2A and similar
flow charts as well, which are for purposes of illustration and
it is recognized that a commercial implementation of the
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basic methods can vary and can be made more efficient than
disclosed in the flow charts and pseudo code. For example, in
an actual implementation, nodes may only exchange mes-
sages with their respective neighbor nodes (the term “neigh-
borisused here to identify claims that can be connected), each
being assigned to a respective processor. Also, the pseudo
code example above continues until no messages are
changed. As described above, there are other termination
conditions that can be used with the belief propagation
method. Another assumption made to simplify the illustration
example is that the b value for all types of nodes is constant
and the same for all. It will be appreciated that, in a contem-
plated implementation, nodes may have different b values and
that the b values may be constant or variable.

The belief propagation matching processor 312 can be a
general-purpose one or more computers adapted for general-
ized matching using belief propagation, a special-purpose
one or more computers for generalized matching using belief
propagation, a programmed microprocessor or microcontrol-
ler and peripheral integrated circuit element, an ASIC or other
integrated circuit, a digital signal processor, a hardwired elec-
tronic or logic circuit such as a discrete element circuit, a
programmed logic device such as a PLD, PLA, FPGA, PAL,
or the like.

The data storage 314 can be a database such as a relational
database or any other suitable arrangement of data. The data
can be stored in a physical media such as a volatile or non-
volatile electronic memory, a magnetic storage device, and/or
an optical storage device.

FIG. 4 is a block diagram of a system for generalized
matching using belief propagation including parallel proces-
sors according to some embodiments of the disclosed subject
matter. In particular, a belief propagation matching system
400 includes a group of suppliers 402 and a group of custom-
ers 404. Each of the suppliers 402 and customers 404 are
represented as nodes arranged and stored in a graph data
structure 406. The system 400 also includes a profit (or cost)
matrix 408. The graph data structure 406 and profit matrix
408 are provided as input to a belief propagation matching
system 412. Also provided as input to the belief propagation
matching system 412 is input data 410. The belief propaga-
tion matching system 412 is coupled to a data storage 414 and
provides matching results 416 as output.

In operation, the suppliers 402 and customers 404 are
stored as nodes or vertices of the graph data structure 406. The
profit matrix 408 stores the edge profits (or weights) for each
edge connecting a supplier and customer. The graph data
structure 406 and the profit matrix 408 can each be stored in
the data storage 414.

The belief propagation matching system 412 receives the
input 410, which can be, for example, a node of interest for
b-matching. The belief propagation matching processor 412
uses the graph data structure 406 and the profit matrix 408 to
perform a distributed form of belief propagation for b-match-
ing described above with respect to FIG. 2A. The messages
are updated using distributed (or parallel) processing and
stored in the data storage 414. Once the termination condition
is met, the belief propagation matching system 412 makes the
matching results 416 available as output. The termination
condition can include any of the termination conditions
described above with reference to the conditional branch 212
of FIG. 2A.

The belief propagation matching system 412 can be a dis-
tributed or parallel processing system. For example, the belief
propagation matching system 412 can be implemented as a
grid or cloud computing system. The data storage 414 can be
an Internet-based scalable storage infrastructure such as
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Amazon.com’s Simple Storage Service (S3) or any other data
storage system suitable for use with the belief propagation
matching system 412.

The belief propagation matching system 412 can also be
implemented according to any other suitable distributed or
parallel processing architecture, including hardware and soft-
ware systems containing more than one processing element
or storage element, concurrent processes, multiple programs,
and/or the like.

The systems and methods described above and below,
herein, can be applied to matching nodes in a system repre-
sented by a unipartite graph data structure such as a social
network. The systems and methods can be used to provide
matching results such as social network referrals, connecting
websites to other websites, routing messages on a network
such as the Internet, and chip layout. In unipartite matching
problems all nodes are of the same type or class (e.g., social
network members) rather than disjoint sets and they can be
matched with other nodes based on a value matrix having a
weight or value for each edge of the unipartite graph data
structure. For example, in the case of FIG. 1A, a unipartite
version would have “u” nodes (102) that are the same as the
“v” nodes (104).

FIG. 5 is a diagram of an arrangement of distributed pro-
cessors for generalized matching using belief propagation
according to some embodiments of the disclosed subject mat-
ter. Although only eight are shown, any number can be pro-
vided. In particular, in this example, a first group of node
processors (502-508) correspond to nodes ul-u4 of the graph
shown in FIG. 1A, respectively. A second group of node
processors (512-518) correspond to nodes v1-v4 of the graph
shown in FIG. 1A, respectively. Each of the node processors
(502-508 and 512-518) are independently coupled to a net-
work 510 (e.g., the Internet, a local area network, wide area
network, wireless network, virtual private network, custom
network, bus, backplane, or the like). By being intercon-
nected through the network 510, each of the node processors
(502-508 and 512-518) can communicate with the others and
send/receive messages according to the belief propagation
method described above. Also, each of the node processors
(502-508 and 512-518) can be queried independently for its
b-matched list generated by the belief propagation method
described above. Not only can each node be independently
queried, but each node can arrive at its optimal b-matched
solution without requiring knowledge of the other nodes’
solutions (i.e., the belief propagation method is “privacy pro-
tecting” with respect to each node).

The solutions for each node can be aggregated in a central
data storage location or may be retained individually at each
node, or grouped according to a criterion (e.g., grouping all
supplier matches into a list and all customer matches into
another list). This aspect is also discussed elsewhere in the
present application and so will not be elaborated upon here.

The network 510 can be a network such as the Internet, a
local area network (LAN), a wide area network (WAN), a
virtual private network (VPN), a direct connection network
(or point-to-point), or the like. In general, the network can
include one or more now known or later developed technolo-
gies for communicating information that would be suitable
for performing the functions described above. The selection
of network components and technologies can depend on a
contemplated embodiment.

In FIG. 5, one processor is shown for each node for clarity
and simplicity of illustrating and describing features of an
embodiment. It will be appreciated that each processor may
perform the belief propagation method for more than one
node.
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FIG. 6 is a diagram of a node processing system for gen-
eralized matching using belief propagation according to some
embodiments of the disclosed subject matter. In particular,
the node processing system 600 includes a belief propagation
node processor 602 that is adapted to access belief propaga-
tion software on one or more computer-readable media 604.
The belief propagation node processor 602 is coupled via link
606 to a network 608. The belief propagation node processor
602 is also coupled to an electronic data store that has stored
therein a profit matrix subset 610, received messages 612 and
belief values 614.

In operation, the belief propagation node processor 602
loads the belief propagation software 604 from the one or
more computer readable media and executes the software.
Once executing, the software directs the belief propagation
node processor 602 to perform generalized matching using
belief propagation according to the method described above.
The belief propagation node processor 602 accesses the profit
matrix subset 610 and computes an updated message value
for each connected (or neighbor or adjacent) node and sends
the respective updated message to each connected node. The
belief propagation node processor 602 also receives updated
messages from the connected nodes. The received messages
are stored in the received messages area 612 of data storage.
The received messages 612 are used in connection with the
profit matrix subset 610 to update belief values 614 for each
of the connected nodes. The profit matrix subset 610 is the
portion of the profit matrix that includes data regarding nodes
connected to the node represented by the belief propagation
node processor 602.

Once a termination condition has been reached, the belief
propagation node processor 602 can sort the belief values 614
and the b connected nodes with the largest belief values can be
selected as the b-matching solution for the node correspond-
ing to the belief propagation node processor 602. It will be
appreciated that the selection of the largest belief values is
applicable to an example in which a profit matrix is used and
it is desirable to enhance and/or maximize profit and that
other sorting and selection techniques may be used in a par-
ticular embodiment, for example in an embodiment employ-
ing a cost matrix it may be appropriate to select the smallest
belief values.

The belief propagation software on a one or more comput-
ers readable media 604, when executed, can cause the belief
propagation node processor 602 to operate according to the
following pseudo code:

Begin Pseudo Code
// define data structures and variables
float Received_ Msgs [num__of__neighbors];
graph node address Neighbor_ Nodes [num__of__neighbors];
int Profit. Matrix [num_ of neighbors];
int b=3;
Boolean Message_ Changed = true;
initialize all Received_Msgs to 1; // to compute messages first time
around
initialize Profit Matrix with bid values of neighbors;
// start a main loop to continue until no messages are changed
while ( Message_ Changed == true ) {
Message Changed = false; // switch off loop unless a message
changes
Receive Messages from neighbors;
Compare new Received Messages with corresponding stored
Received Messages to look for changed messages;
If Any Changed Messages Received {
Store Received Messages in Received_Msgs|[ |;
Message_ Changed = true;
for j=1 to num__of_neighbors {
Sorted_ Msgs[ ] = sorted list of Received_ Msgs[ ] *
corresponding Profit_ Matrix[ | values excluding
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-continued

L = original index of Sorted__Msgs[b]; // get index (or
node) of the bth received msg*profit;
Message =
exp(Profit_ Matrix[j]) /
(exp(Profit_ Matrix[L]) *
received__msgs[L]);
Send Message to Neighbor_ Node[j];
} end j loop
} end if changed message changed
} end while loop - we are now done - no messages are changing
// now get the belief values for this node
for j=1 to num__of__neighbors {
belief values[j] = received__msgs[j] *
Pofit Matrix[j];
} end j loop
sort beliefvalues[ ];
output largest b belief values[ ];
End Pseudo Code

The above pseudo code example makes several assump-
tions in order to simplify the pseudo code for illustration
purposes. For example, the b value is a constant value. Also,
the code is assumed to be used on a processor that is comput-
ing the belief propagation for a single node of the graph, so
that the indexing can be simplified for illustration.

Generalized matching or auction problems find the best
assignment of goods to consumers or advertisers to consum-
ers when given a matrix of weights or value for each possible
assignment. Generalized bipartite matching is 100% solvable
by linear programming.

The disclosed subject matter approach may employ belief
propagation which provide certain advantages and can pro-
vide solutions which are 100% optimal. For example, it can
provide solutions that are optimal in an efficient manner and
can scale up to problems involving millions of users and
advertisers. Other applications include network reconstruc-
tion, image matching, resource allocation, online dating, sen-
sor networks, and others.

Online content providers can use the disclosed subject
matter to better match advertising after a user enters a search
term. Typically, online content providers show the top adver-
tisers that bid the highest amount for a particular search term.
Typically, this is done by performing a generalized matching
and then controlling the display of the advertisement accord-
ingly.

FIG. 7 is a block diagram of a system for matching adver-
tisers with search terms using belief propagation according to
some embodiments of the disclosed subject matter. In par-
ticular, the system 700 includes a search engine/content pro-
vider 702 that is coupled to a belief propagation system for
advertisement/keyword (search term) matching 704. The
search engine/content provider 702 is also coupled to an
electronic data store having stored therein data representing a
plurality of advertisers (706-708) each having a respective set
of'search terms (or keywords), advertisement associated with
each keyword, and a bid for placing each advertisement (710-
712). The search engine/content provider 702 receives search
terms, keywords and/or uniform resource locators (URLs)
714 from one or more users. In response to the received input
714, the search engine/content provider 702 performs search
term/advertiser matching using the belief propagation system
for advertisement/keyword (or search term) matching 704 to
match a number of advertisements (three in this example) to
the search term input, as described below with respect to FI1G.
8. The b-matching advertisements (e.g., 3) are then displayed
on a search engine results page (or content page of a partner
website) 716 as displayed advertisements 718.
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The b-matching advertisements may then be automatically
placed and displayed on a search engine’s results page. In
other embodiments, other actions can be automatically
implemented such as allocating computational resources to
users, outputting authorization codes to allow users to access
physical equipment (such as backhoes, automobiles, tools, or
other mechanical equipment). The number and variety of
consequential actions that can be automatically initiated or
culminated as a result of the matchings made are varied and
will depend on the applications.

In this example, the nodes of the graph data structure
include the advertisers/advertisements and the keywords (or
search terms). The profit matrix includes the bid prices for
each ad by each advertiser. The bid prices may be used as raw
values or may be manipulated in order to arrive at a profit for
the bid. The b value represents the maximum number of
advertisements to be displayed (e.g., 3). However, each
advertiser/advertisement node may also be subject to other
constraints on its belief value such as a quota of advertise-
ments to be displayed during a given period of time or a quota
on an amount of money to be spent during a given period of
time. These constraints may affect whether or not an adver-
tiser/advertisement is selected as matching for a keyword,
even if the bid for that advertiser/advertisement is high
enough that it would normally be selected.

Advertisers may seek to manipulate or “game” the adver-
tising bid system. The belief propagation methods and sys-
tems described above can be modified to provide enhanced
protection against bid or ad system manipulation. For
example, one bid manipulation scheme includes attempting
to deplete a competitor’s ad budget by placing a bid just less
than the winning bid, this causes the price actually paid by the
winning bidder to be artificially high and thus depletes the
competitor’s budget faster than would normally occur. After
the competitor’s budget is depleted, their bid is no longer the
highest and the ad can be placed at a lower cost by the
manipulator. One technique for combating this type of
manipulation is to augment the b-matching algorithm with a
module that can select a winner other than the first place or
b-highest matches. By selecting an ad to be placed other than
the normal matching ads, the manipulator’s ad can be chosen,
thus depleting the manipulator’s budget as well. This discour-
ages advertisers from placing artificially high bids in an
attempt to deplete a competitor’s budget. It will be appreci-
ated that other now known or later developed ad auction
manipulation prevention measures can be used with the dis-
closed subject matter.

The system for matching advertisements with search terms
or keywords 700 can comprise a second system (not shown)
in addition to the belief propagation matching system for
advertisement keyword matching (704). The second system
can be a bid web server, which also would typically comprise
one or more computer storage media, one or more processing
systems and one or more databases. Conventional web brows-
ers, running on client computers can be used to access infor-
mation available through the bid web server and permit adver-
tisers to place bids for desired keywords that will be queried
through the search engine or content provider. The bid web
server can be accessed through a firewall, not shown, which
protects account information and other information from
external tampering. Additional security measures such as
Secure HTTP orthe Secure Sockets Layer may be provided to
enhance the security of standard communications protocols.

FIG. 8 is a chart of a method of matching advertisers with
search terms using belief propagation according to some
embodiments of the disclosed subject matter.
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Processing begins at 802 with provision 804 of'a graph data
structure and other data. The graph data structure nodes or
vertices represent advertisers and keywords to be matched.
For example, the graph data structure can include advertiser
nodes that represent an advertisement from a particular adver-
tiser to be displayed when a users enters one of a group of
keywords that are of interest to the advertiser. The graph data
structure can include keywords or search terms that corre-
spond to those entered by users and which need to have a set
of advertisements matched with in order to enhance amd/or
maximize revenue generated from pay-per-click advertising,
for example. A profit matrix is also provided. The profit
matrix represents a profit value for each advertiser/advertise-
ment node connected to a corresponding search term node. At
806, variables are initialized. The latter operation may
include initializing values of data storage elements that store
the values of the most recent messages received by the node.

Next, electronic messages are passed between adjacent or
neighboring nodes as indicated at 808. A belief propagation
processor or distributed processing system adapted to per-
form belief propagation sends each message from a node
based on the profit matrix values and received messages of
that node. The value (or data content) of each message is
determined according to a compressed message update pro-
cess, described above. Received messages are stored by the
processor in an electronic memory, such as, for example,
RAM or a database. The message passing can be performed
iteratively until a termination condition is met. A conditional
branch based on the termination condition is indicated at 812.
As discussed elsewhere, a variety of conditions can be
defined.

Belief values for each neighboring node are updated based
on received messages and stored as indicated at 810. The
updating can be executed, for example, by the processor
adapted to perform belief propagation. The belief value for
each node is based on the received messages and the profit
matrix portion. If the belief value updating would result in
changes to messages already sent, then those messages are
sent again with updated values. However, if no belief values
change or no message updates are needed, then the node does
not send out messages. The settling ofthe node’s belief values
for adjacent nodes can indicate that an optimal solution has
been reached and the belief propagation has converged on a
solution to the matching problem.

The b-matching advertiser/advertisement nodes matching
an input search term are selected as indicated at 814. The
selected advertiser/advertisement nodes are matched based
on sorted belief values. For example, in a b-matching prob-
lem, the b nodes having the highest belief values (i.e., profit
values) with respect to an input node are selected. The
selected nodes can be provided as output to another process or
system. For example, the advertisements corresponding to the
selected nodes can be displayed on the search engine results
page or content page associated with the search term. Then
processing ends at 816.

As for the embodiment 200 (as well as analogous opera-
tions in other embodiments 1000, 1200, and 1444 described
below), it will be appreciated that the sequence 802-816 may
be repeated in whole or in part in order to accomplish con-
templated generalized matching using belief propagation.
For example, the belief values may be updated for the entire
graph data structure and then matching results may be pro-
vided for a plurality of nodes of interest before the belief
values of the graph are updated. Alternatively, because the
matching may result in changes to one or more nodes in the
graph as a result of being selected as matching nodes (e.g., an
advertiser’s quota of ads or quota of dollars spent may be
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reached), the belief values may need to be recomputed each
time a matching is performed for a node.

FIG. 9 is a block diagram of a system for matching dating
service members using belief propagation according to some
embodiments of the disclosed subject matter. In particular,
the system 900 includes a dating service provider 902 that is
coupled to a belief propagation system for dating service
member matching 904. The dating service provider 902 is
also coupled to an electronic data store having stored therein
data representing a plurality of dating service members (906-
908) each having a respective set of interests (910-912). The
dating service provider 902 receives the interests (910-912)
from one or more respective users (906-908). The interests
(910-912) can be used to generate a “profit” matrix (effec-
tively captures a compatibility metric) for the users, for
example, by generating a value representing the interests in
common for a given pair of users. In response to the received
interests (910-912), the dating service provider 902 performs
member matching using the belief propagation system for
dating service member matching 904 to match each member
with b other members (e.g., for a fee a dating service may
provide b introductions or matches to each user), as described
below with respect to FIG. 10. The b matching members may
then be communicated to the member that they are matched
with as an introduction (e.g., each user may receive an email
listing the members he or she has been matched with). For
example, a results set 914 (e.g., in anemail or displayed on the
user’s page at the dating service) can be provided for Member
1. Within the results are listed the b-matching members 915
selected to match Member 1. And, similarly, a results set 916
(e.g., in an email or displayed on the user’s page at the dating
service) can be provided for Member n. Within the results set
916 are listed the b-matching members 918 that have been
selected to match Member n.

In this example, the nodes of the graph data structure
include the members of the dating service. The “profit”
matrix (or compatibility matrix) can include the predicted
compatibility between a pair of members. The b value repre-
sents the number of matchings of most likely compatible
members to be provided to each respective member (e.g., in
accordance with the service agreement with the member).
However, each member node may also be subject to other
constraints on its belief value such as type of other member
being sought, geographic preference, other preferences, a
quota of matches to be provided during a given period of time,
or the like. These constraints may affect whether or not a
member is selected as matching for another member, even if
the “profit” or compatibility for that member is high enough
that it would normally be selected.

FIG. 10 is a chart of a method of matching dating service
members using belief propagation according to some
embodiments of the disclosed subject matter. Processing
begins at 1002 and a graph data structure at 1004 is provided.
The graph data structure nodes (or vertices) represent dating
service members to be matched. A compatibility (or “profit”)
matrix is also provided. The compatibility matrix represents a
compatibility (or “profit”) value for each potential pairing of
dating service members. As described above, the compatibil-
ity value can be determined based on interests in common, or
may be determined according to other suitable methods con-
ventionally used by dating service providers.

At 1006, variables are initialized. The latter operation may
include initializing values of data storage elements that store
the values of the most recent messages received by the node.

Next, electronic messages are passed between adjacent or
neighboring nodes as indicated at 1008. The details are not
repeated since they are similar to the operations detailed
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above and below. The message passing can be performed
iteratively until a termination condition is met as indicated by
the conditional branch 1012.

Belief values for each neighboring node may be calculated
based on received messages and stored as indicated at 1010.
In this and the other embodiments, the belief values can be
calculated once after the termination condition (as shown in
the flow chart) or continuously updated prior to the termina-
tion condition. The operations are described above and below
and are therefore not detailed here again.

FIG. 11 is a diagram of a system for matching sellers and
buyers in an auction using belief propagation according to
some embodiments of the disclosed subject matter. In par-
ticular, the system 1100 includes an auction service provider
1102 that is coupled to a belief propagation system for auction
buyer/seller member matching 1104. The auction service pro-
vider 1102 is also coupled to an electronic data store having
stored therein data representing a plurality of sellers (1106-
1108) each having a respective set of goods/services being
offered (1110-1112), and a plurality of buyers (1114-1116)
each having a respective set of goods/services being sought
(1118-1120). The auction service provider 1102 receives the
goods/services being offered (1110-1112) and the goods/
services being sought (1118-1120), which can be used to
generate a profit matrix for matching the buyers and sellers,
for example, by generating a profit value for each seller sell-
ing his goods/services to a corresponding buyer seeking those
goods/services.

In response to the received goods/services being offered
(1110-1112) and the goods/services being sought (1118-
1120), the auction service provider 1102 performs buyer/
seller matching using the belief propagation system for auc-
tion buyer/seller matching 1104 to match each buyer with b
sellers (e.g., such that the buyer’s requirements are met), as
described below with respect to FIG. 12. The b matching
sellers may then be communicated to the buyer that they are
matched with in order to complete a transaction. For example,
aresults set 1122 that has the b-matching between buyers and
sellers can be provided as output. Alternatively, the matches
for a particular buyer or seller can be communicated directly
to that buyer or seller.

In this example, the nodes of the graph data structure rep-
resent goods/services being offered (1110-1112) and the
goods/services being sought (1118-1120). The profit matrix
can have values based on a particular buyer buying from a
particular seller. For example, in the case of a buyer, the b
value can represent the number of matching sellers needed to
meet the buyer’s requirements. In the case of a seller, the b
value can represent the number of buyers needed to purchase
the sellers goods/services being offered. However, each node
may also be subject to other constraints on its belief value.
These constraints may affect whether or not a buyer/seller is
selected as matching for another buyer/seller, even if the
profit for that matching is high enough that it would normally
be selected.

FIG. 12 is a chart of a method of matching sellers and
buyers in an auction using belief propagation according to
some embodiments of the disclosed subject matter.

After beginning at 1202, a graph data structure is provided
as indicated at 1204. The graph data structure nodes or verti-
ces represents auction buyers and sellers, and their respective
goods/services, to be matched. A profit matrix is also pro-
vided. The profit matrix represents a profit value for each
seller node connected to a corresponding buyer node. At
1206, variables are initialized. The latter operation may
include initializing values of data storage elements that store
the values of the most recent messages received by the node.
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Electronic messages are passed between adjacent or neigh-
boring nodes as indicated at 1208. The details are not repeated
since they are similar to the operations detailed above and
below. The message passing can be performed iteratively
until a termination condition is met. This is controlled by a
branch point 1212.

Belief values for each neighboring node are updated based
on received messages and stored as indicated at 1210. In this
and the other embodiments, the belief values can be calcu-
lated once after the termination condition (as shown in the
flow chart) or continuously updated prior to the termination
condition. The operations are described above and below and
are therefore not detailed here again.

Ifthe termination condition has been reached, the b-match-
ing buyer or seller nodes matching an input buyer/seller node
are selected as indicated at 1214, otherwise control returns to
1208.

The selected nodes are matched based on sorted belief
values at 1214. For example, in a b-matching problem, the b
nodes having the highest belief values (i.e., profit values) with
respect to an input node are selected. The selected nodes can
be provided as output to another process or system. For
example, the sellers corresponding to a selected buyer node
can be displayed for the buyer (or vice versa). Processing then
ends at 1216.

FIG. 13 is a diagram of a system for resource allocation
using belief propagation according to some embodiments of
the disclosed subject matter. In particular, the system 1300
includes aresource allocation provider 1302 that is coupled to
a belief propagation system for resource allocation 1304. The
resource allocation provider 1302 is also coupled to an elec-
tronic data store having stored therein data representing a
plurality of resources (1306-1308) each having a respective
set of resource constraints/goals (1310-1312), and a plurality
of projects (1314-1316) each having a respective set of
project constraints/goals (1318-1320). The resource alloca-
tion provider 1302 receives the resources (1306-1308) and
resource constraints/goals (1310-1312), and the projects
(1314-1316) and project constraints/goals (1318-1320),
which can be used to generate a “profit” matrix for matching
the resources with the projects. For example, resources may
be reviewers for academic papers and the projects may be
papers needing to be reviewed. The resources (reviewers)
may indicate constraints such as only wanting to review a
certain number of papers and may indicate goals such as a
desired set of papers to review. The papers may have corre-
sponding constraints such as needing to be reviewed by at
least x reviewers. A profit matrix can be generated that
includes the preferences of the reviewers as “profit” for
matching them to a desired paper.

In response to the received resources (1306-1308) and
resource constraints/goals (1310-1312), and projects (1314-
1316) and project constraints/goals (1318-1320), the
resource allocation provider 1302 performs resource alloca-
tion using the belief propagation system for resource alloca-
tion 1304 to match each project with b resources (e.g., such
that the project’s requirements are met and the resource’s
constraints are met), as described below with respect to FIG.
14. The b-matching resources may be assigned to the project
that they are matched with in order to complete the project.
For example, a results set 1322 that has the b-matching
between projects and resources can be provided as output.
Alternatively, the matches for a particular resource or project
can be communicated directly to that resource or project.

In this example, the nodes of the graph data structure rep-
resent resources and projects. The profit matrix can have
values based on a resource’s desire for a project and/or limit
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of the number of projects that can be undertaken. For
example, in the case of a resource, the b value can represent
the number of projects that the resource can be committed to
(e.g., the number of papers that a reviewer wishes to commit
to reviewing). In the case of a project, the b value can repre-
sent the number of resources needed to meet the project
constraint (e.g., each paper needs 3 reviewers). However,
each node may also be subject to other constraints/goals on its
belief value. These constraints may affect whether or not a
resource/project is selected as matching for another resource/
project, even if the profit for that matching is high enough that
it would normally be selected.

FIG. 14 is a chart of a method of resource allocation using
belief propagation according to some embodiments of the
disclosed subject matter.

After beginning at 1402, a graph data structure is provided
as indicated at 1404. The graph data structure nodes or verti-
ces represent resources and projects, and their respective
constraints/goals, to be matched. A profit matrix is also pro-
vided. The profit matrix represents a “profit” value for each
resource node connected to a corresponding project node. At
1406, variables are initialized. The latter operation may
include initializing values of data storage elements that store
the values of the most recent messages received by the node.

Next, at 1408, electronic messages are passed between
adjacent or neighboring nodes. The details are not repeated
since they are similar to the operations detailed above and
below. The message passing can be performed iteratively
until a termination condition is met as indicated by the con-
ditional branch at 1412.

At 1410, belief values for each neighboring node are
updated based on received messages and stored. In this and
the other embodiments, the belief values can be calculated
once after the termination condition (as shown in the flow
chart) or continuously updated prior to the termination con-
dition. The operations are described above and below and are
therefore not detailed here again.

Ifthe termination condition has been reached, the b-match-
ing resource or project nodes matching an input resource/
project node are selected at 1414, otherwise, control returns
to 1408. The selected nodes are matched based on sorted
beliefvalues at 1410. For example, in a b-matching problem,
the b nodes having the highest belief values (i.e., profit val-
ues) with respect to an input node are selected. The selected
nodes can be provided as output to another process or system.
For example, the projects corresponding to a selected
resource node can be displayed for the resource (or vice
versa). Processing then ends at 1416.

FIG. 15 is a diagram of a plurality of belief propagation
processors implemented in hardware according to some
embodiments of the disclosed subject matter. In particular, a
system 1500 includes a plurality of belief propagation pro-
cessors (1502-1508 and 1512-1518). Each of the processors
is coupled to a bus 1510. The belief propagation processors
are constructed for operating as nodes in a belief propagation
system for generalized matching. The system 1500 can
include processors that are stand-alone or can represent a
single semiconductor device having multiple belief propaga-
tion processors constructed thereon.

In operation, each hardware belief propagation processor
performs the belief propagation method described above fora
single node. The hardware details are shown in FIG. 16,
which is a diagram of a hardware belief propagation proces-
sor according to some embodiments of the disclosed subject
matter.

In particular, the hardware belief propagation processor
1602 includes a multiplier section 1604, an adder section
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1606, a sorter section 1608, a max unit 1610, a storage 1612
each coupled to an internal bus 1614. The processor 1602 is
coupled to an external bus 1616 in order to communicate with
other processors and exchange messages 1618. The messages
1618 include a “to” field, a “from” field and a value field. The
“to” field specifies an intended recipient node of the message,
the “from” field specifies the sending node, and the value field
contains the message value as calculated according to the
message update process described above.

In operation, the processor 1602 receives (or otherwise
detects) messages on the external bus 1616. When a message
is intended for the processor 1602, the processor 1602 (re-
ceives if necessary and) stores it in the storage at a location
corresponding to the sender node of the message. Processor
1602 can then calculate an updated message value to the
nodes stored in its storage as neighbor or adjacent nodes and
can send the updated messages to each corresponding neigh-
bor node. The sections and units of the processor 1602 are
used to perform the calculations required for determining
updated messages and belief values. The processor 1602 can
also transmit its b-matching nodes to another processor or
system via the external bus 1616.

The processor 1602 may be implemented as a stand alone
device or may be incorporated into a device having other
circuitry including other belief propagation processor nodes.

The b value for matching mentioned above can be a con-
stant value and the same for all nodes. Alternatively, each
node can have an independent b value that can be different
from that of the other nodes. Also, instead of being a constant
value, the b value can be described as a distribution over a
range of values. Problems with distributions of b-values (or
degrees of connectedness between nodes) are known as
degree distribution problems.

Examples of degree distribution problems include auctions
where each buyer and seller may select an independent num-
ber (or capacity) of corresponding buyers/sellers or may have
a range of capacities they can handle but incur different costs.
Also a degree distribution problem can arise for cases in
which the capacity changes over time, such as when a desired
number of possible connections changes according to a quota
which varies dynamically. Conventional approaches to solv-
ing b-matching problems may not be effective for solving
degree distribution problems.

The belief propagation methods and systems of the dis-
closed subject matter, of either linear or distributed forms, can
beused to solve degree distribution problems if the graph data
structure and weight (or profit) matrix are adjusted according
to the following technique.

Referring to FIG. 17A, as an example, an auction problem
may have a group of n seller nodes each having a degree
distribution 1,(j) over n possible matches, where j refers to a
particular number of matches that can be made (a variable
version of b in the situation where the number of desired
matches is a constant). Also, the problem may have a group of
n buyer nodes each having a degree distribution ¢,(j) over n
possible matches, where j, again, refers to a particular number
of' matches. The degree distributions),(j) or ¢,(j) represent an
apportionment of the desirability (or profitability or value) of
the respective number (j) of matches.

A first example illustrates a special case 1702 in which
each seller desires to indicate a particular number of matches
it will accept. The number of acceptable matches may vary
according to each seller and buyer. Sellers are represented in
the example by 1,(j) and buyers by ¢,(j). A second example
1704 illustrates the case of a seller j who may accept matches
to 2 or 3 buyers but no other numbers of matches and he could
set his degree distributions to reflect a profitability for 2
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matches that is two times his profitability for 3 matches. This
relative profitability might reflect operating costs above nor-
mal capacity to supply to 3 buyers, for example. The seller’s
actual or relative profit for matching to any given buyer is
represented in the W matrix independently of the relative
profitability reflected in the degree distribution. But the
weight (profit) matrix values are discounted computationally
as discussed below based on the relative profitability relating
to the number of matches.

In the example 1704 of the seller, to make the calculation,
the y,(j) and ¢,(j) are calculated in an expanded matrix (de-
scribed below) as the natural logs of the relative profitabili-
ties, namely, %5 and %4, requiring the sum over the degree
distribution to be equal to 1. In that case, exp [},(2)]=%5 and
exp [¢,(3)]=". Exponentials of all the other1),(j) will be zero.
Then 1,(2)=In(34) or —0.405 and y,(3)=In(¥5) or -1.099. All
the other values of1,(j) may be set to very negative numbers,
for example negative 10 million or their differentials, dis-
cussed below, set to zero or large numbers which would be
equivalent as will be seen further below. The buyers can come
to the same matching calculation and give completely differ-
ent degree distributions for the same calculation resulting in
the ¢,()).

The degree distributions can be represented in any suitable
way, for example, as tables corresponding to each buyer or
seller node. As above, these may be stored in an electronic
memory or multiple electronic memories in a distributed
computation setting, respective to a particular node or respec-
tive to several nodes, but not all.

Referring to FIG. 17B, to solve the degree distribution
problem, the weight matrix W that represents the value (or
relative value) of each match, is expanded, doubling its size to
generate an expanded weight matrix W'. The original weight
matrix W (which reflects, for example, the negotiated price
for a good to be sold by seller i to buyer k) forms the upper left
quadrant of the expanded weight matrix W'. The upper right
quadrant of the expanded weight matrix W' includes 1,(j)
delta values such as, starting at the first row: y, (0)-y,(1),. ..,
Y, (n-1)-y, (n), and so on until the last row ,,(0)-, (1), .. .,
P, (n-1)-p,(n). The lower left quadrant of the expanded
weight matrix W' includes ¢,(j) delta values such as, starting
at the first row: ¢, (0)-¢, (1), . . ., ¢,,(0)-9,,(1), and so on until
the last row ¢,(n-1)-¢,(n), . . ., ¢,(n-1)-¢,(n). The lower
right quadrant values can all be set to zero.

The bipartite graph is expanded by adding to the seller and
buyer nodes, dummy nodes to double the number of sellers
and buyers. Thus, if there are n buyers and n sellers, an
additional n buyers and n sellers are appended. These dummy
nodes correspond to the appended delta values ,(j), ¢,(j), or
0, respectively in the expanded weight matrix W'. In cases
where the number of sellers differs from the number of buy-
ers, the larger ofthe two is used as the expanded weight matrix
size and the smaller side of the original weight matrix is
expanded with small values (e.g., zero or negative maximum
value) and dummy nodes are added to the graph data. These
complete a square original and expanded weight matrix and
original and expanded bipartite graph. The expanded nodes
are dummy nodes similar to those used for the expanded
weight matrix.

Once the expanded weight matrix W' is created and the
dummy nodes are provided, the methods described above, for
example with reference to FIGS. 2A through 2E, can be
applied to the expanded graph and weight data. In distributed
processing, the number of node processors may simply be
doubled, for example, to have each processor operate and
receive and send messages relating to a respective node. The
value of b used for solving the problem may be set to n,
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namely, the number of buyers and sellers (noting that some of
the buyers and sellers may be dummies and not real buyers or
sellers). Once the matching problem is solved on the
expanded graph using the expanded weight matrix W', as a
b-matching problem, (b=n), according to the disclosed belief
propagation methods and systems, the b-matching solution
for the original graph and weight matrix is obtained by
extracting the upper left quadrant of a matrix representing the
matches on the expanded graph.

The b-matching solution may be represented as a binary
matrix where each value in the matrix includes a 1 or 0, and
where a 1 represents a matching between a buyer/seller pair
corresponding to that element of the matrix, and a 0 corre-
sponds to no match being made for that buyer/seller pair. The
degree distribution technique is described in more detail with
background and mathematical proofs in Appendix II.

As mentioned, the above approach can be applied in
embodiments described above in which the matching prob-
lem is solved using multiple processors except that the num-
ber of processors may be doubled to process the larger num-
ber of disjoint sets. So in an example of matching buyers to
sellers, there would be twice the number of buyer processors
and twice the number of seller processors with half of each
being assigned to the dummy nodes.

In some of the above embodiments relating to the assign-
ment of web advertisements according to bids, various factors
can be used to modify the weight value of the weight matrix
used to represent the matching problem. These can include:
click through rate; how many times a user selects a given ad in
a given session; a duration of time, from an ad result selection,
until the user issues another search query, which may include
time spent on other pages (reached via a search result click or
ad click) subsequent to a given ad click; a ratio of the time,
from a given ad result selection until a user issues another
search query, as compared to all other times from ad result
selections until the user issued another search query; time
spent, given an ad result selection, on viewing other results for
the search query, but not on the given ad result; how many
searches (i.e., a unique issued search query) that occur in a
given session prior to a given search result or ad selection;
how many searches that occur in a given session after a given
search result or ad selection; rather than searches, how many
result page views that occur for a given search query before a
given selection, this can be computed within the query (i.e.,
just for a unique query), or for the entire session; and rather
than searches, how many search result page views that occur
for a given search query after this selection, this can be com-
puted within the query (i.e., just for the unique query), or for
the entire session.

Embodiments of the method, system, one or more comput-
ers program product and one or more computers readable
media for generalized matching using belief propagation,
may be implemented on a general-purpose one or more com-
puters, a special-purpose one or more computers, a pro-
grammed microprocessor or microcontroller and peripheral
integrated circuit element, an ASIC or other integrated circuit,
a digital signal processor, a hardwired electronic or logic
circuit such as a discrete element circuit, a programmed logic
device such as a PLD, PLA, FPGA, PAL, or the like. In
general, any process capable of implementing the functions
or processes described herein can be used to implement
embodiments of the method, system, or one or more comput-
ers program product for generalized matching using belief
propagation.

Furthermore, embodiments of the disclosed method, soft-
ware, and one or more computers program product (or one or
more computer readable media) for generalized matching
using belief propagation may be readily implemented, fully
or partially, in software using, for example, object or object-
oriented software development environments that provide
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portable source code that can be used on a variety of one or
more computers platforms. Alternatively, embodiments of
the disclosed method for correcting generalized matching
using belief propagation can be implemented partially or
fully in hardware using, for example, standard logic circuits
or a VLSI design. Other hardware or software can be used to
implement embodiments depending on the speed and/or effi-
ciency requirements of the systems, the particular function,
and/or a particular software or hardware system, micropro-
cessor, or one or more computers system being utilized.
Embodiments of the method, system, and one or more com-
puter program products for generalized matching using belief
propagation can be implemented in hardware and/or software
using any known or later developed systems or structures,
devices and/or software by those of ordinary skill in the
applicable art from the functional description provided herein
and with a general basic knowledge of the one or more com-
puters arts.

Moreover, embodiments of the disclosed method for gen-
eralized matching using belief propagation can be imple-
mented in software stored on one or more computer readable
media (or provided as one or more computer program prod-
ucts) and adapted to be executed on a programmed general-
purpose one or more computers, a special purpose one or
more computers, a microprocessor, or the like. Also, the gen-
eralized matching using belief propagation method of this
invention can be implemented as a program embedded on a
personal one or more computers such as a JAVA® or CGI
script, as a resource residing on a server or graphics worksta-
tion, as a routine embedded in a dedicated processing system,
or the like. The method and system can also be implemented
by physically incorporating the method for generalized
matching using belief propagation into a software and/or
hardware system, such as the hardware and software systems
of a search engine, online auction, online dating, resource
allocation, or image processing system.

Note that while many of the operations described herein are
described in terms of mathematical functions and operations,
such functions and operations can be approximated while still
permitting the solutions of the respective problems to be
achieved. For example, the exponential function, multiplica-
tion functions, and/or logarithmic functions may have com-
putational analogs or approximations that may be used to
implement them. Thus, in using the mathematical terms in the
above discussion it should be understood that the embodi-
ments include those in which such approximations are used.

Note thatin all embodiments where a system or component
loads software or data from a storage device or computer
readable media, it will be understood that modifications of
such embodiments are possible and considered within the
embodiments of the disclosed subject matter. For example,
data may be read from a stream provided by a remote data
storage device operating according to any principle including
volatile or nonvolatile memory. An “Internet drive,” network
attached storage, distributed storage, or any other suitable
device may also be used.

It is, therefore, apparent that there is provided in accor-
dance with the present invention, a method, system, one or
more computer program products and one or more computer
readable media with software for generalized matching using
belief propagation. While this invention has been described in
conjunction with a number of embodiments, it is evident that
many alternatives, modifications and variations would be or
are apparent to those of ordinary skill in the applicable arts.
Accordingly, applicants intend to embrace all such alterna-
tives, modifications, equivalents and variations that are within
the spirit and scope of this invention.
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[00108] If the weight matrix 118 is A such that the weight of any edge 106, 108
(u;,v;) is AU , the potential matchings are defined by the function M (u,) or M (v i)
where the function M returns the set of neighbor vertices (or nodes) of the input
vertex (or node). The b-matching objective can be written as:

W)=

max, > Y, A +) D A 1

=1 vieM (it;) J=1 weM (vi)

st. I1M@u)l =b¥ie{l,...,n}
M)l =b,Vjel,....n)

[00109] Defining the variables x,€ X and y, €Y for each vertex such that

x, =M (u;) and y, =M(v,), the following potential functions can be defined:
#x)=exp(D A, 6(y,)=exp(D A,);
vjexi vEy;

and a clique function can be defined:
Qll(xl.,yj):—l(vjexi@uie yj) 2)

[00110] Using the potentials and clique function, the weighted & -matching objective

can be written as a probability distribution p(X.,Y) o< exp(W(M)).

P 1) =~ T[T Tw v [ o) )

=l j=1
[00111] The probability function (3) above is maximized using the max-product
algorithm. The max-product algorithm iteratively passes messages between
dependent variables and stores beliefs, which are estimates of max-marginals.
Conventionally, messages are represented by vectors over settings of the variables.
The following are the update equations from x; to y;.

1
m, (yj) = meax P(x )Y (x;, yj)H m, (x,)

ke j

1
b(x) == [m, (x)
z ‘
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[00112] Direct belief propagation on larger graphs using the above equations
converges, but may not be suitable due to the number of possible settings for each
variable.

[00113] In order to quickly solve a b-matching problem using belief propagation,
while still maintaining algorithm guarantees, several improvements over conventional
direct belief propagation are needed. Three features of the above equations are
exploited in order to allow the messages to be represented as scalars.

[00114] First, i functions are well structured, and their structure causes the

maximization term in the message updates to always be one of two values.

n, (yj) o rvneaxx ¢(xi)Hmyk (x,),1fu, e y;

k#j
m, (y;) o max ¢(xi)Hmyk (x), ifu, &y, )
J i ;tj

[00115] This is because the  function changes based only on whether the setting of
y; indicates that y, shares an edge with «; . Furthermore, if we redefine the above

message values as two scalars, we can write the messages more specifically as

H, cmaxg(x) [T e [T v

UE€X; \V; UREX NV,
Vi, o Max P(x;) H My H Vii )
i Vgt weEx \v; TR TANY

[00116] Second, since the messages are unnormalized probabilities, we can divide

any constant from the vectors without changing the result. We divide all entries in the
message vector by v, to get
i
Fo _ ﬂxiyj A _
’uxi)’j B and inyj _1

XY

[00117] This lossless compression scheme simplifies the storage of message

vectors from length [”) to 1.
b

The ¢ functions are rewritten as a product of the exponentiated A; weights and

eliminate the need to exhaustively maximize over all possible sets of size b . Inserting

Equation (2) into the definition of ﬂxz ,, gives
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max (o) [ 1., 2,
Py, == -
max ¢(x;) [l.. &

rigx erxi exp(4;) er X\ i
rigx erxi exp(4;) er X\ i

exp(4;) rgleeix erxi\j exp( Ay ) A

I%%X er . eXP(4; )b

[00118] We cancel out common terms and are left with the simple message update

process,
L exp(4)
P exp(A)A,,
[00119] Here, the index ¢ refers to the b th greatest setting of k for the term
exp(A4; )m,, (x;), where k # j. This compressed version of a message update can be
computed in O(bn) time.

[00120] We cannot efficiently reconstruct the entire belief vector but we can

efficiently find its maximum.

maX b('xi) o< max ¢(xi)Hl[zykxi

kex;

o< max [ Jexp(4,)4,,

ke x;

Finally, to maximize over x, we enumerate k and greedily select the b largest values

of exp(A, )L, , -
[00121] The procedure avoids enumerating all (Zj entries in the belief vector, and

instead reshapes the distribution into a b dimensional hypercube. The maximum of
the hypercube is found efficiently by searching each dimension independently. Each

dimension represents one of the b edges for nodew; . In other words, the above
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procedure makes it possible to select the largest b matches for each node as the

solution, without having to compare all of the node combinations.
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Graph Structure Estimation with Degree Distributions

Abstract

We describe a gencrative model for graph
structures that incorporates local edge po-
tentials as well as degree-dependent poten-
tials. If the degree probabilities are log-
concave, the most likcly graph structure un-
der our model’s distribution can be found ef-
ficiently by mapping the problem into a com-
binatorial optimization known as b-matching.
We provide concentration bounds for data
sampled from a generative model for recom-
mendation matrices, which can be used as
degree potentials. Finally, we demonstrate
that, by adding these degree dependencies,
we are able to improve upon existing predic-
tion methods.
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1 INTRODUCTION

This article describes a method of estimating grapl
structure and applies this method to the task of pre-
dicting binary recommendation matrices. We provide
two wain contributions: (1) a probability distribution
over graph edge structures that yields an efficient in-
ference method, and {2) concentration bounds for data
sampled from a generative model for recommendation
matrices. The bounds we detail can be directly applied
to characterize the edge distribution of a user-product
recommendation graph, leading to improved accuracy
over current rmethods.

We develop a particular distribution over graphs that
uses factorization assumptions and incorporates dis-
tribution priors over node degrees. Maore importantly,
this distribution allows for the efficient recovery of
the most likely subgraph from the set of all possible
graphs. The maximum a posteriori (MAP) cstimate
under this distribution is shown to be equivalent to the
combinatorial problem known ag b-matching, which is
solvable in polynomial time.
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Because our framework can handle any set of log-
concave degree distributions, we provide a strict gen-
eralization of b-matching and more general maximum
weight degree constrained subgraph optimizations, in
which all nodes must have some pre-specified degrees.
In our formulation can implement b-matching con-
straints by using delta functions for the degree dis-
tribution. Similarly, if we use uniform degree distribu-
tions, we obtain bd-matching [2].

1.1 PREVIOUS WORK

Previous work on denoising edge observations uses a
similar distribution over edges to ours, but the authors
of [8] use loopy belief propagation to obtain approx-
imate marginals and perform approximate inference.
This article indicates that, in some settings, MAP es-
timation over subgraphs under degree constraints can
be solved exactly in polynomial time.

Collaborative filtering in recommendation systems is
the task of predicting the preferences of users for prod-
ucts from previous rating data. The common approach
assumes that the rating matrix over the users and
items is assumed to be low rank; Each (user,item) en-
try of the matrix is an inner product of a small num-
ber of features describing a user and a small number
of features describing each the item. Therefore, the
task is to complete the unobserved entries so that the
full matrix can be factorized into low-dimensional fac-
tors. Unfortunately explicit low-rank approximations
have local minima and several relaxations have been
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proposed. For instance, low-rank solutions may be ob-
tained by minimizing the norm of the decomposition
matrices using a semi-definite program (SDP), as in
the maximum-margin matrix factorization (MMMF)
framework [9, 12]. This optimization is cast as a gra-
dient descent algorithm, which allows it to scale to very
large datasets [10]. In addition to finding low rank de-
compositions of the rating matrix, it has proven useful
to model the variation in rating behavior of the users,
or more explicitly, the highly variable scaling effects
on the ratings due to each user’s subjectivity in pro-
ducing absolute estimates for ratings [5]. For example,
the strongest variant of MMMF predicts not only the
rating matrix, but also a set of thresholds adapted for
each user. This allows different users to use different
rating scales and avoids the impractical requirement
that a common calibrated rating scale is being followed
by all users [9].

Because preference data is typically volunteered by
users, the distribution of observable ratings is differ-
ent from the full distribution of all user-product pairs
[6]. Learning about this full distribution from which
we have no data is a difficult challenge for the collab-
orative filtering community. In this paper, we only
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work with the distribution of visible entries, since we
benchmark our method using the same volunteered
data anyway. !

Our method takes advantage of previous results on the
combinatorial optimizations in the families of general-
ized matchings. This includes standard matching and
b-matching. In these problems, we are given a graph
with weighted edges, and hard constraints on the de-
grees of the nodes. The task is to find the subgraph
that fits the degree constraints that maximizes edge
weight. Classical algorithms such as the equivalent
balanced network flow problem [2] are known to solve
bd-matchings in O(n?) time. Newer belief propagation
algorithms can solve bipartite b-matchings in the same
asymptotic running time but thousands of times faster
in practice [1, 3, 11].

'"There are some applications that will still benefit from
learning from only the observable distribution. For exam-
ple, a recommendation system could only give its predicted
rating to a user after the user has selected the product (for
purchase or otherwise). A user would be able to cancel her
order if the predicted recommendation is low.



US 9,117,235 B2
47 48

1.2 OUTLINE

This paper is organized as follows: In Section 2, we
describe the generative model for graph structure and
detail the mapping to a b-matching. In Section 3,
we derive a concentration bound for the row and coi-
umn means of preference matrices (or, equivalently,
in-degree and out-degree bounds for each node), which
can be used as degree priors. In Section 4, we describe
some empirical results, including a graph reconstruc-
tion and recommendation matrix completion experi-
ments. Finally, we conclude in Section 5 with a brief
discussion.

2 EDGE GENERATIVE MODEL

We begin by writing a distribution over all possible
subgraphs, which involves terms that factorize across
(a}) edges (to encode independent edge weight) and (b)
degree distribution terms that tie edges together, pro-
ducing dependencies between edges. The probability
of any candidate edge set £ C F can be expressed as

InPr(E|G) =Y ¢(e) + Y ¥i(deg(vi, E)) —InZ (1)
eGE

’UiEV



US 9,117,235 B2
49 50

The edge potentials can also be represented by a sym-
metric potential matrix W where W, is the potential
of edge (v;,v;). The function deglv;, E) returns the
mumber of edges in £ that are adjacent to node v;.
Thus, this probability puts different local preferences
on the edges via edge weights but also enforces more
global structural knowledge about the likelihood of a
subgraph by imposing degree distributions. Unfortu-
nately, due to the large number of edges tmplicated
in each degree distribution term 4, the probability
model above has large tree-width. Therefore, exact
inference and naive MAP estimation procedures {for
instance, using the junction tree algorithm) can scale
exponentially with n. Fortunately, we will be able to
show that concavity assumpiions on ¢; can lead to
efficient polynomial time MAFP estimation.

2.1 ENCODING AS A -MATCHING

If we also enforce concavity of the ¢ functions in Equa-
tion 1, the above probability can be maximized by
solving a b-matching, Formally, we define coucavity as

dvi(k) = (k) —yi(k—1)
(k) = (k) — ik — 1)
= (k) =ik - 1) —
(Vi(k — 1) — (k- 2)) <0.
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If degree potentials conform to these concavity con-
sty amt s, we can exactly mimic the probability function
Pr( \ which manipulates subgraphs £ of & with
satt degl ce priors, with another eguivalent probability
function Pr(F’|G"). This larger yet equivalent proba-
bility involves a larger graph G' and larger subgraphs
F’. The key snnphﬁmtmn will be that the larger sub-
graphs will have to satisfy hard degree constraints for
each node {or priors that are delta functions on the de-
grees) on its in-degree and its outwdegrs:ee (as opposed
to a soft distribution over allowable degrees).

Owr construction proceeds as follows. First create a
new graph &7, which contains a copy of the original
graph G, as well as additional dummy nodes denoted
D We Wiﬂ use these dummy nodes o mimic the role

of the soft degree potential functions ¢y, ..., ¥y, For
each node v; in our original set V', we introduce a set of
dummy nodes. We add one dumuy node for each edge
it & that is adjacent to each v;. In other words, for
@ach nodf-‘ v;, we will add dummy nodes d@,,l, BN A

of m}de; ;. Eadl ui the dumtm IlOd?\ in d ,,,,, di N,

7

is connected to v; in the graph G'. We now hdw a new
graph G/ = {V', £’} defined as follows:
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D = Hdi1,....diny, - ydni,. o dnn, b
V' = VUD,
E = EU{(v@,dm)HSJ§NZ,1§z§n}

We nexs specily the weights of the edges in G7. First,
set the weight of each edge e copied from & to its
original potential, ¢{e). Next, we set the edge weights
between the original nodes and dummy nodes. The
following formula defines the weight between the orig-
inal node v; and the dumy nodes dy 5, di p, that

¥ J

were introduced due to the neighborbood of vy
w(vi, d;j) = il —1) — i) (2)

While the 1 functions have outputs for ¢(0), there
are no dummy nodes labeled d; o associated with that
setting (¥(0) is only used when defining the weight of
d; 1). Note that by construction, the weights w(v;, d; ;)
are monotonically non-decreasing with respect to the
index 7 due to the concavity of the ¥ functions:

Vi(§) — (G ~1) < (G — 1) —i(j —2)
—w(vi,di;) < —w(vi,dij-1)
w(vi, diyy) = wl(vi,dij—1)- (3)
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We mimic the probability function Pr(E|G) in Equa-
tion 1 over edges in G with a probability function on
G’ called Pr(£’|G"). However, the probability func-
tion on G’ enforces hard degree constraints on the hy-
pothesized edges E’. Specifically, for the (original)
nodes vi,...,v, each node v; has to have exactly N;
neighbors (including any dummy nodes it might con-
nect to). Furthermore, all dummy nodes D in G’ have
no degree constraints whatsoever. It is known that
such probability functions on Pr(E’|G’) with exact de-
gree constraints can be maximized using combinatorial
methods [2] as well as beliel propagation [1, 3, 11].

The proposed approach recovers the most likely sub-
graph B/ = arg max ; i Pr(F’|G') as follows:

/\/ . PPN
E' = arg maxpp E w(vi, d; ;) (4)
(vi,di,g) € EY

subrject to deg(u,;,E') = N, for v; € V.

In other words, we are free to choose any graph struc-
ture in the original graph, but we must exactly meet
the degree constraints by selecting dummy edges max-
imally.
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Theorem 1. The total edge weight of degree-

from graph G’ differs from log Pr(E' N E|G) by a fized
additive constant.

Proof. Consider the edges £/ 1 E. These are the esti-
mated connectivity E after we remove dummy edges
from: F7. Since we set the weight of the original edges
to the ¢ potentials, the total weight of these edges is
exactly the first term in {1}, the local edge weights,

What remains is to confirm that the ¢ degree poten-
tials agree with the weights of the remaining edges
TN\ BN E between original nodes and durmamy nodes.

Recall that our degree constraints require each node in
7 to have degree N;. By construction, each node vy
hag 2N; available edges from which to choose: N; edges
from the original graph and N; edges to dummy nodes.
Moreover, if v; selects & original edges, it maximally
selects NV; — k dummy edges. Since the dummy edges
are constructed so their weights are non-increasing, the
maximum N, — & dummy edges are to the last Ny — &
duremy nodes, or dummy nodes d; 1 through d; n, .
The proof is complete if we can show the following:

N; N;
D wlondig) = Y wvidig) = ilk) — k).

j=k+1 j=k'+1
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Terms in the summabions cancel out to show this
equivalence. Substituting the definition of w(v;, d; 4),

1\7‘5, N‘z
ST D -w() - D (@i 1) - (i)
Gkl j=k'+1
N; N; N N
= “?‘w‘;— o) = Y i+ > wil))
----- j=k+1 Gkt Jemkd 41

= @bz(’») pi(K)

This means the log-probahbility and the weight of the
new graph change the exact same amount as we try
different subgraphs of . Therelore, for any de-
gree coustrained subgraph E' the (uantities B =
argmaxg, log F'r E’|G) and log Pr{E’ N B} differ
only by a constant. L]

In practice, we find the maximum weight degree
constrained ﬁ»ub graph o maximize Pr{#'|G") using
classical maximum flow algorithms [2] which require
Oi{nE} computation time. In the special case of bi-
partite graphs, we can use a beliet propagation al-
gorithm |1, 3, 11] which is significantly faster. Fur-
thermore, since the dummy nodes have no degree con-
straints, we only need to instantiate max; (V;) dummy
nodes and reuse them for each v;. The process de-
scribed in this section is illustrated in Figure 1.
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3 PREFERENCE MATRICES

In most settings, we may have weights for each edge
but have no immediate access to degree distribution
information about the nodes. In this section we will
show {after assuming a reasonable model of graphs or
preference matrices) that one can obtain such informa-
tion from partially observing a graph and show that
these partial empirical measurements will lead to cone-
ceconcentration guarantees on the degree distribution.

Consider a graph treatment of collaborative prediction
data such as preference matrices which can be seen
as a bipartite graph. We are inferested in providing
theoretical bounds from such a graph or preference
matrix that will act as surrogate information for exact
knowledge of the degree priors detailed in the previous
section. Typically, collaborative prediction data is in
the form of an anonymized rating matrix Y, such that
the entry Y,, represents the rating user ¢ provided for
product 7. We consider the case of binary ratings, or
alternately, thresholded multi-valued ratings.

In this setting, it is natural to consider the rating ma-
trix a bipartite graph between sets of n user nodes
{7 and m product nodes V. Positive edges represent
that a user recomumends a prodiet and negadive edges
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represent that a user does not recommend a product.
Non-edges indicate that there is no data between a
user and a product. In this setting, the collaborative
prediction task becomes the following: We are given a
set of U and V nodes an«d a set of positive and negative
training edges, Fy, = (F;. UE.,). Given another set of
test edges Fio, predict the subgraph of positive query
edges (E,. C FE.) that most accurately represent the
true test recommendations.

We will present a generative modei for such rating ma-
trices or bipartite graphs. Each user and each prod-
uct is represented by a d-dimensional vector. Denote
each user vector fi; € [0,1]¢ and each product vector

€ [0,1]4. The probability of a positive recommen-
dation is defined as

d

_ 1 ¢

Pr(Yi; = +1 | pi, 7)) = Z# (k)v;(k EU?V?"
k‘,:

(5)
Assume we sample the recommendations indepen-
dently from the above probability distributions. Fur-
thermore, we assume that each fi user vector is drawn
iid from some population distribution b, and each
product vector 7 is drawn iid from some product dis-
tribution D,. We make no parametric assumptions
about these two distributions.
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Figure 2: Graphical representation of the rating genera-
tive function described in Eqguation 5

3.1 DEVIATION BOUNDS

Since the ratings are generated by such a structured
model, classical concentration bounds do not apply di-
rectly to bound the average ratings in the training data
to the average ratings in the testing data. However,
under the mild assumption that each wuser and each
product is sampled iid, we are able to derive new de-
viation bounds.
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We consider the deviation between the average ratings
of a user in training data from the average ratings in
testing data. Let n; denote the number of training
ratings and 7; the number of ratings being queried. In
other words, n; = deg(u;, E.) and #; = deg(u;, E7).
Without loss of generality, let the first n; ratings be
training ratings and the last 71; ratings be testing. The
deviation can be written as the function

(17 +n2

f(Yzla---:Yz,erm):ﬁl‘ZYw Z }?:

j=1 43 n;+1

We are interested in finding Pr(|f| > ¢), for some con-
stant confidence interval e.

Theorem 2. Given two random sample sets of en-
tries across a single row or a single column from a rec-
ommendation matriz generated by the model in Equa-
tion &5, the deviation f between the average of each
sample sets is bounded by the following:

2

Pr(lf| = ¢) < ddexp (—Q(Zi"j'fgi)) o

Proof. The Lipshitz constants for function f are ¢y =
1/n; for k =1,....,n;, and ¢y = 1/n; otherwise. Al-
though the input random variables are not identically
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distributed, they are independently sarpled, so we can
apply MceDiarmid’s Inequality {7] to obtain

Pr(f > t+E[f]) <

o
o

Pr(f < —t+E[f]) <

2 A
2t n;n;
ni + 7

9 A
2t n;m;

n; + Ny

)
) ®

Now, we need to bound the expected value of E[f],
which should be close to zero, but not exactly zero.
Since our model explicitly defines the probability of

Y,; given u; and v, we can write the

expectation as

E[f(l/:h]-? s 7}/;"77)“5_{_&1;)]
= &= E Yij — — E Yij
n; T4
j=1 j=ni+1
N n; -+,
]. —T = 1 T —
= dn E Hi Vi — g E Hq Vj
J:]_ v j:n,-l—l
n; n;+17;
1 1 _
= dfi | — D U > 7
Y g=1 ' j=ni+1
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Let C denote the quantity of the vector inside
the parentheses, C' == (i P N Dj),

Ty
Then we can bound each entry in C using the same
McDiarmid’s Inequality.

2720, 71,
Pr(C(k) > 1) <exp| ————
(O 2 7) < exp (- 200 )

With some simple substitution, we have

2T 2 TL@TALL )
pi(k)2(ni + i) )
Since we have no way of bounding u; in this sample,

we assume ; = 1 and apply the Union Bound over all
dimensions, which provides the worst case bound

27’2712’7%
ng + 1

Pr(p (K)C(K) = 7) < oxp (_

Pr(E[f] > 7) < dexp (— 9)

Finally, we combine the two bounds from Equations 8)
and 9. First, let

) ; / 27’277,7;’&7'
S —dexp| -1 10
2 exp ( n; + n; ) ( )

This is the right hand side of Equation 9 above. There-
fore, the probability of E[f] > 7 is at most §/2, for

7= \/nz -l-j’}%‘ log 2761 (11)
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Similarly, we can apply the same argument to the
bound in Equation 8 by setting

) 22,7

Ny + Ny

Then, Equation 8 states that, for the following valie
of t, the probability that f >t + E[f] is at most §/2

iRy 2
= \/n +Ar'L log =. (13)

We can plug Equations 13 and 11 into Eq. 8, which
shows that with probability at most &,

We can rewrite § in terms of e.

(s 1 1og(d))”

4 2¢2n,;7;
7+,

0 =2dexp | —
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Owr target inequality is then the following.

2
(2 + log(d))
I'(f Z 6) S QdeXp e Y e———

Since we expect all data to have dimensionality of at
least 1, dropping the logarithmic term only loosens our
bound, and the ineq mhtv simplifies to

€ mfzz

r(f>ze < 2deXP( 2(_77,2—!—_71,)) (15)

By symmetry, we have the following:

2 A

f(fl 20 < ddosp (—L) - (16)
This bounds the probability of the testing mean devi-
ating from the training sample mean along a vow of the
rating matrix. Analogous bounds are easily derived for
deviation along the columns by switching all user vari-
ables with product variables. These row and column
bounds in the recommendation matrix are equivalent
to in-degree and out-degree bounds in the bipartite
graph case. ]

3.2 DEVIATION DEGREE PRIORS

Although our derivations only guarantee an upper
bound, we expect the formula in Equation 7 to be close
to the true shape of the mean deviation distribution
between training and testing data.
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t 1 n; n’z‘i‘nz
Pr ‘n— E }/@j E ]fm = ¢
A S| b imn;+1
1 Ly
R = eXP (—w e (17)
Z 2y + Ay,

In other words, we can use the following for our degree
dependent potentials.

) 2
(Aol + ("r}" deg(ui, Bif) — 5“) it
'@%degg\%@? Ete) e f{\g e PR .

(18)
This potential is concave and fits nicely into our frame-
work. By enforcing these degree/deviation distribu-
tions, we can post-process predicted ratings by using
the original predictions as edge weights and using our
bounds as the degree potentials.

4 EXPERIMENTS
4.1 GRAPH RECONSTRUCTION

One natural application of our model is graph recon-
struction. For instance, consider the case where we
are given noisy edge weights and want to reconstruct
the original binary graph such that it obeys some rea-
sonable degree distribution. In many situations, edge



US 9,117,235 B2
81 82

26 R i v v M R B SRR AR RRRRRRARA SRR
NS True histogram

[
3 s Mgx-fikslinood Sxponential Distr. &
g J
4
% R 3
= N

19 15 20 25 30 38 40

Degres

Figure 3: The true and learned degree distributions of a
fictional soclal network of coappearance of 64 characters
from the novel Les Misérables.

weights can be approximated by computing an atfinity
between node descriptors, for instance, by using a key-
nel function between vectors describing nodes. These
edge weights can be inserted into our modsl Pr(ﬁ] G
via the ¢ terms. However, we may also have useful in-
formation about the degree distribution our estimated
subgraph should obey, which can be inserted into our
model via the o terms.

To simulate this scenario, we use a graph of coappear-
ance of 64 characters in the novel Les Misérables [4].
We learn the maximum likelihood exponential distri-
3 DY FOT A o= vl ~1 T 2 o

bution parameterA = (3 oy deg{v))™. The true de-
gree distribution and the learned distribution are plot-
ted in Figure 3.

Denote the adjacency matrix of the true coappearance
graph by A. In other words, 4;; = 1 if there is an edge
E between node 1 and node j and otherwise 4;; = 0.
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To mimic a noisy set of features for each node, we
perform a spectral embedding of the graph. This in-
duces features from the graph by using the leading
eigenvectors of the adjacency matrix A. Figure 4 is a
plot of the 2-dimensional spectral embedding with the
original connectivity. We obtain a noisy approxima-
tion to the original A matrix by computing an inner
product (a linear kernel) between the induced node
features, which are merely the top two eigenvectors of
the spectral embedding. In other words, we keep only
a low rank (rank 2) approximation A of the original
graph’s adjacency matrix A, which is clearly insuffi-
cient to reconstruct the original graph. However, if we
also combine this low rank approximation with infor-
mation about degree distributions, it should be pos-
sible to perform more accurate reconstruction of the
original graph A.

Therefore, we will use this kernel matrix (of inner
products between very low dimensional features for
each node) or low rank adjacency matrix A to recon-
struct the original graph structure. We set the ¢ po-
tential functions to linear translations of the kernel:

(v, v5) — J‘L'jj — €. (19}
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Spectral Embedding of ariginat graph
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Figure 4: Two dimensional spectral embedding of Les
Misérables graph. Two dimensions are clearly insuthelent
to represent the proper distances in this graph, so we
should expect simple affinity thresholding to benefit from
extra information.

We then find the most likely edge configuration under
Fquation 1. More specifically we are recovering the
maximum weight bmatching using Pr{E"1). This
gives us an estimate £ = argmax & Pr{E1¢) which we
use to construet an adjacency matrix Al

Using only A aud degree distribution information, we
construct an adjacency matrix A that is potentislly
cloger to the original matrix A, We compare our
method, which includes the degree distribution infor-
mation (the exponential degree model} to the naive
scheme, which simply thresholds the ¢ or 4 values
to obtain a binary graph. Acvoss all thresholds, our
method using degree distributions produce the most
accurate overall reconstruction, as shown in Figure 5.
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Figure 5: Hamming ervor of graph reconstruction using
degree distributions versus simple thresholding. Error is
displaved on a logarithinic scale.

4.2 COLLABORATIVE FILTERING

We use the degree potentials based on the concen-
tration bound for preference matrices to post-process
the ratings predicted by Fast Max-Margin Matrix Fac-
torization (MMMF) [10]. In particular, we test our
method on binarized versions of three datasets: Movie-
lens, Eachmovie, and Jester. The Movielens data set
contains about one million ratings {from ! to 5) by
6,040 users for 3952 movies, The EachMovie data
seb contains 2,811,983 ratings (from 1 to 6) by 74,424
users for 1,648 movies. The Jester data set confains
1,810,455 ratings (from -10 to 10} by 24983 for 100
jokes.
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Since these databases use multi-valued ratings, we
threshold each to obtain binary ratings. We choose
thresholds such that approximately half of all ratings
are in each bin: 4 or greater for Movielens, 4 or greater
for BachMovie, 0 or greater for Jester. These thresh-
olds approximately correspond to unguantified, hit-or-
miss recommendations, We use three random splits of
the observed ratings into 50% training and 50% test.

After cross-validating to find the optimal regulariza-
tion parameter for MMMF, we feed the output from
MMME into our system by instantiating each query
rating as an edge, using the MMME prediction as the
edge welght (offset by the user thresholds). We then
add the degree priors from Equation 18, scaled by a
regularization constant, which allows us to adjust the
strength of the degree prior. By setting the regulariza-
tion scalar to zero, we have uniform degree priors and
the problem becomes a straightforward thresholding,
which is the standard output of MMME. By cross-
validation over the regularization constant by includ-
ing some known ratings in the query edge set, we are
able find a setting that improves on the testing accu-
racy of MMME’s cutput {on each split of each data
set). Typically, running MMME on these large data
sets takes a few hours to complete, while our post-
processing takes a few extra minutes. Since the prob-
lem becomes a bipartite b-matching, we can use fast
belief propagation code to find the exact solution while
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taking full advantage of sparsity. Figure 6 and Table
1 report the results of these experiments.

5 DISCUSSION

We have provided a method to find the most likely
graph from: a distribution that uses edge weight in-
formation as well as degree-dependent distributions.
The exact edge estimate is recovere:d in polynomial
time by showing that the problem is equivalent to b-
matching or the maximum weight degree constrained
subgraph. These can be efficiently and exactly im-
plemented using maximum flow and belief propaga-
tion methods. A limitation of the approach is that
the degree distributions that can be modeled in this
way must be log-concave. We have derived bounds
for the deviation of degrees between training and test-
ing data that fit our log-concavity requirement for de-
gree priors and demounstrated that adding these priors
improves accuracy on recommendation matrix predic-
tion. Many steps in our derivation loosen these bounds
significantly for the sake of simplicity 2, but further im-
provement may be achieved by using tighter bounds.

We can apply McDiarmid’s Inequality to avoid the
drastic Union Bound in Equation 8, but the result is not
as clean.
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What is claimed is:

1. A computer readable medium having software instruc-
tions stored thereon for matching an advertisement with a key
term using belief propagation, the software instructions,
when executed by a processor, cause the processor to perform
operations comprising:

identifying a predetermined number of advertiser nodes

matching a selected key term node;

updating a belief value corresponding to each neighboring

advertiser node of a selected key term node in a graph
data structure by passing messages between neighbor-
ing nodes until a termination condition is met, each
message being based on profit matrix values and
received messages, where a data content of each mes-
sage is determined according to a compressed message
update process;

the compressed message update process comprising calcu-

lating one or more intermediate values for each neigh-
boring advertiser node of a selected key term node that is
based on exponentiated profit matrix values and
received messages, sorting the one or more intermediate
values, selecting an intermediate value from the one or
more intermediate values based on the predetermined
number of advertiser nodes matching the selected key
term node, and calculating a new message based on the
exponentiated profit matrix values, the received mes-
sages, and the selected intermediate value;

the passing messages including applying data signals to

and receiving signals from a multiprocessor data input/
output system,;

storing each updated belief value and each received mes-

sage in an electronic storage associated with the selected
key term node;

selecting the predetermined number of advertiser nodes

matching the selected key term node, the matching

based on updated belief values of advertiser nodes

neighboring the selected key term node; and
outputting the selected advertiser nodes.

2. The computer readable medium of claim 1, wherein the
data content of each message is a single scalar value.

3. The computer readable medium of claim 2, wherein the
single scalar value corresponds to a potential matching of the
selected key term node with a respective one of its neighbor-
ing advertiser nodes.

4. The computer readable medium of claim 3, wherein the
single scalar value includes a profit matrix value correspond-
ing to a potential matching of the selected key term node and
the respective one of the neighboring nodes and a value of a
message received by that respective neighbor node from
another node and a profit matrix value corresponding to a
potential matching between the respective neighbor node and
the other node.

5. The computer readable medium of claim 1, wherein the
software instructions are adapted for use on distributed pro-
CeSSOrs.

6. A distributed processing system for matching advertise-
ments with search terms using belief propagation, the system
comprising:

aplurality of processors each corresponding to a node of a

graph data structure having advertisement nodes and
search term nodes where each advertisement node is a
neighbor to at least one search term node;

anetwork coupling the plurality of processors and adapted

to transfer messages between the processors;

wherein each processor is adapted to load and execute

software instructions stored on a computer readable
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medium, the software instructions, when executed,
cause the processor to perform operations including:

identifying a predetermined number of advertiser nodes
matching a selected search term node;

updating belief values corresponding to its respective

neighbor nodes by passing messages between neighbor-
ing nodes until a termination condition is met, a data
content of each message being based on profit matrix
values and received messages, where a data content of
each message is determined according to a message
update process;

the compressed message update process comprising calcu-

lating one or more intermediate values for each neigh-
boring advertiser node of a selected search term node
that is based on exponentiated profit matrix values and
received messages, sorting the one or more intermediate
values, selecting an intermediate value from the one or
more intermediate values based on the predetermined
number of advertiser nodes matching the selected search
term node, and calculating a new message based on the
exponentiated profit matrix values, the received mes-
sages, and the selected intermediate value;

storing each updated belief value and each received mes-

sage in an electronic storage associated with the respec-
tive processor;

selecting the predetermined number of matching neighbor

nodes, the matching being determined based on updated
belief values of neighbor nodes; and

outputting the selected matching neighbor nodes.

7. The distributed processing system of claim 6, wherein
the data content of each message is a single scalar value.

8. The distributed processing system of claim 7, wherein
the single scalar value corresponds to a potential matching of
the selected search term node with a respective one of its
neighboring advertiser nodes.

9. The distributed processing system of claim 8, wherein
the single scalar value includes a profit matrix value corre-
sponding to a potential matching of the selected search term
node and the respective one of the neighboring nodes and a
value of a message received by that respective neighbor node
from another node and a profit matrix value corresponding to
a potential matching between the respective neighbor node
and the other node.

10. The distributed processing system of claim 6, wherein
each profit matrix value represents a profit amount associated
with an edge between neighboring nodes.

11. The distributed processing system of claim 6, wherein
the updating is performed iteratively until the termination
condition is met.

12. The distributed processing system of claim 6, wherein
the termination condition is a predetermined number of itera-
tions of the updating.

13. The distributed processing system of claim 6, wherein
the termination condition is defined as receiving no changed
message values within a predetermined period of time.

14. The distributed processing system of claim 6, wherein
the termination condition is a number of messages sent from
each node.

15. The distributed processing system of claim 6, wherein
the termination condition is an elapsing of a predetermined
period of time.

16. The distributed processing system of claim 6, wherein
the termination condition is defined as the earliest occurrence
of one of receiving no changed message values within a first
predetermined period of time and an elapsing of a second
predetermined period of time.



US 9,117,235 B2

103

17. A computerized method for matching advertisements
with search terms using belief propagation, the method com-
prising:

providing a bipartite graph data structure having a plurality

of advertiser nodes and a plurality of search term nodes,
where each advertiser node is connected to a corre-
sponding search term node by an edge;

providing a profit matrix having a profit for each edge of the

bipartite graph data structure;

identifying a predetermined number of advertiser nodes

matching a selected search term node;

updating, with a processor adapted to perform belief propa-

gation generalized matching, a belief value correspond-
ing to each advertiser node connected to a selected
search term node by passing messages between adjacent
nodes until a termination condition is met, each message
being based on profit matrix values and received mes-
sages, where a data content of each message is deter-
mined according to a compressed message update pro-
cess;

the compressed message update process comprising calcu-

lating one or more intermediate values for each neigh-
boring advertiser node of a selected search term node
that is based on exponentiated profit matrix values and
received messages, sorting the one or more intermediate
values, selecting an intermediate value from the one or
more intermediate values based on the predetermined
number of advertiser nodes matching the selected search
term node, and calculating a new message based on the
exponentiated profit matrix values, the received mes-
sages, and the selected intermediate value;

storing each updated belief value and each received mes-

sage in an electronic storage associated with the corre-
sponding advertiser node;
selecting the predetermined number of advertiser nodes
matching each search term node of a group of search
term nodes of interest, the matching being determined
based on updated belief values of advertiser nodes adja-
cent to each search term node of interest; and

outputting the selected advertiser nodes matching each
search term node of interest.

18. The method of claim 17, further comprising displaying
advertisements associated with each of the selected advertiser
nodes on a search results page corresponding to the search
term node associated with the selected advertiser nodes.
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19. The method of claim 17, further comprising storing at
each advertiser node and at each search term node a portion of
the profit matrix, where each portion is selected based on
adjacent nodes of each respective advertiser node and each
respective search term node.

20. The method of claim 17, wherein the compressed mes-
sage update process generates a message that includes

exp(Ay)

by = —
T exp(Aipy .,

where u refers to the plurality of advertiser nodes, where
x,=M(u,), where v, represents an advertiser node of the plu-
rality of advertiser nodes u, where M is a function that returns
a set of neighbor nodes of an input node, where M(u,) returns
a set of neighbor search term nodes of the advertiser node u,,
where v refers to the plurality of search term nodes, where
y,~M(v,,), where v, represents a search term node of the
plurality of search term nodes v, where M(v,,) returns a set of
neighbor advertiser nodes of the search term node v,, where
(u,;v;) refers to a matching of the advertiser node u, and the
search term node v,, where A is a weight matrix and A,
represents a weight of edge v; and the index 1 refers to the b th
greatest setting of k for the term exp(A,)m,.(x,), where b
represents a predetermined number of advertiser nodes of the
plurality of advertiser nodes u matching each search term
node of the plurality of search term nodes v, where m repre-
sents a message, and where k=j.

21. The method of claim 17, wherein the updating and
storing are performed using parallel processing.

22. The method of claim 17, wherein each profit represents
a profit on placement of an advertisement by an advertiser
associated with the advertisement.

23. The method of claim 17, wherein the updating is per-
formed iteratively until the termination condition is met.

24. The method of claim 17, wherein the termination con-
dition is a predetermined number of iterations of the updating.

25. The method of claim 17, wherein the termination con-
dition is defined as a steady state of updated belief values
during a predetermined period of time.
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